设l是沿直线x+y=1从点(0,1)到点(1,0)求∫l(x+y)(dx+dy)
设l为直线x+y=1上从点a(1,0)到b(0,1)的直线段,则∫(x+y)dx-dy=?
解:把方程x+y=1改为参数方程:x=1-(√2/2)t,y=(√2/2)t于是dx=-(√2/2)dt,dy=(√2/2)dt
x=1时t=0x=0时t=2/√2=√2.
故[a,b]∫(x+y)dx-dy=[0,√2]∫[1-(√2/2)t+(√2/2)t][-(√2/2)dt]-(√2/2)dt=[0,√2]∫(-√2)dt
=-(√2)t︱[0,√2]=-2