arctanx的不定积分是xarctanx-(1/2)ln(1+x^2)+C。在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f。
求arctanx不定积分
∫ arctanx dx
=xarctanx-∫ x d(arctanx)
=xarctanx-∫ x /(1+x^2) dx
=xarctanx-(1/2) ∫ 1/(1+x^2) d(1+x^2)
=xarctanx-(1/2)ln(1+x^2)+C