其实本题目是求极限的一个题目,即是x趋于0时,sinx的极限等于多少
对于sinx是正弦函数,它的图像在整个定义域上是连续的,且在每一点都有极限。当limx趋于0,sinx极限值是0。事实上对于正弦函数sinx,在x趋于某个值时,它的极限值就等于这个值的正弦值。
limx趋近于0sinx等于多少
当x趋于0时,sinx的极限是0。
lim(x→0)sinx=sin0=0
求y=sinx,当x趋向0时的极限,可以直接带入法求得。
扩展资料:
数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。
极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。
极限的思想方法贯穿于数学分析课程的始终。可以说数学分析中的几乎所有的概念都离不开极限。在几乎所有的数学分析著作中,都是先介绍函数理论和极限的思想方法,然后利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数,广义积分的敛散性、重积分和曲线积分与曲面积分的概念。如:
1、函数在
点连续的定义,是当自变量的增量趋于零时,函数值的增量趋于零的极限。
2、函数在
点导数的定义,是函数值的增量
与自变量的增量
之比
当
时的极限。
3、函数在
点上的定积分的定义,是当分割的细度趋于零时,积分和式的极限。
4、数项级数的敛散性是用部分和数列
的极限来定义的。
5、广义积分是定积分其中
为,任意大于
的实数当时的极限,等等。