旋转曲面绕轴旋转公式推导

更新时间:02-11 综合 由 枝桠 分享

丶已知从x=a到x=b横截面积A(x)的立体,如果A(x)可积,那么它的体积是A从a到b的积分:V=∫A(x)dx(上限为b,下限为a)

    所以只要知道该物体横截面积关于x的函数进行定积分运算就可以得到体积了.

  对于旋转体,如果给定了一条曲线比如y=√x[0≤x≤4],那么就可以确定其横截面积关于x的函数:A(x)=π(半径)^2=π[R(X)]^2=π[√x]^2=πx.然后计算体积步骤如上.

    对于由两条曲线围成部分区域绕x轴旋转,那么同理可以确定它的横截面积关于x的函数:A(x)==π[R(X)]^2-π[r(X)]^2.比如:求曲线y=x^2+1和直线y=-x+3围成区域绕x轴旋转产生立体的体积为,首先确定积分限,就是联立方程求解.然后确定内半径和外半径,外半径为:R(X)=-x+3,内半径为:r(X)=x^2+1.然后利用公式算出横截面积关于x的函数,最后定积分计算

声明:关于《旋转曲面绕轴旋转公式推导》以上内容仅供参考,若您的权利被侵害,请联系13825271@qq.com
本文网址:http://www.25820.com/all/15_6489449.html