e的x次方乘sinx的原函数

更新时间:02-02 综合 由 花心症 分享

∫(e^x)sinxdx=(e^x)[sinx-cosx]/2+C。∫(e^x)sinxdx=∫sinxd(e^x)=sinx(e^x)-∫(e^x)dsinx=sinx(e^x)-∫(e^x)cosxdx=sinx(e^x)-∫cosxd(e^x)=sinx(e^x)-(e^x)cosx+∫e^xdcosx=sinx(e^x)-(e^x)cosx-∫e^xsinxd所以∫(e^x)sinxdx=(e^x)[sinx-cosx]/2+C

性质:积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。主要分为定积分、不定积分以及其他积分。积分的性质主要有线性性、保号性、极大值极小值、绝对连续性、绝对值积分等。

声明:关于《e的x次方乘sinx的原函数》以上内容仅供参考,若您的权利被侵害,请联系13825271@qq.com
本文网址:http://www.25820.com/all/15_6798696.html