切线方程与法线方程

更新时间:02-03 综合 由 薇糖 分享

函数图象的切线方程与法线方程的关系答复是:曲线上同一点的切线方程与法线方程互相垂直。即它们的斜率互为负导数。

若切线方程为y=kx+b,则法线方程为y=(-1/k)x+b。

切线方程与法线方程

、计算方式不同

切线方程的计算方法有向量法,分析解析法,代入法等。

而法线方程的计算方法:法线斜率与切线斜率乘积为-1,即若法线斜率和切线斜率分别用α、β表示,则必有α*β=-1。法线可以用一元一次方程来表示,即法线方程。与导数有直接的转换关系。

2、定义不同

切线方程定义:是研究切线以及切线的斜率方程,涉及几何、代数、物理向量、量子力学等内容。是关于几何图形的切线坐标向量关系的研究。分析方法有向量法和解析法。

法线方程定义:法线斜率与切线斜率乘积为-1的方程。

扩展资料:

切线方程是一条直线即类似于g(x) = kx + b。要求这点的切线方程,求得斜率k 之后代入点(a,f(a))便可求得b,从而得解。

由于斜率 = lim(△x->0) [△y/△x] = dy/dx,即斜率是曲线的导数f’(x)。

那么在点(a,f(a))的切线方程是f’(x)(a-x)+f(a)。

牛顿法:也就是从估计点x0出发,以y=f(x0)+f'(x0)(x-x0)作为对y=f(x)的估计,求得根x1。x1=x0-f(x0)/f'(x0)依次迭代。

显然该切线的斜率等于曲线的斜率k=f'(x0),那么该切线的方程为y=f'(x0)(x-x0)+f(x0)(这里是牛顿法的核心,也就是使用切线对曲线进行近似)。

声明:关于《切线方程与法线方程》以上内容仅供参考,若您的权利被侵害,请联系13825271@qq.com
本文网址:http://www.25820.com/all/15_6799525.html