无穷小的精确度

更新时间:02-08 综合 由 小瓶盖 分享

数学无穷小精度:

数学分析的基础概念。它指变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的数值(极限值)。

极限方法为数学分析用以研究函数的基本方法,分析的各种基本概念(连续、微分、积分和级数)都是建立在极限概念的基础之上,然后才有分析的全部理论、计算和应用.所以极限概念的精确定义是十分必要的,它是涉及分析的理论和计算是否可靠的根本问题。

无穷小的精确度

同学们今天我们来讨论一下:

精确度问题是指:在计算极限时,若作等价无穷小代换,会涉及到无穷小的阶数,如果无穷小的阶数不够,则可能导致计算错误。

1)精确度问题主要出现在分式极限的计算中:如果分子包含加减运算,对分子作等价代换时,用到的无穷小的阶数必须达到分母的阶数,同样,对分母作等价代换时也是如此。

2)对于不是分式的极限计算问题,如果包含加减运算,则相加减的项作等价代换时,也要使其精确度(阶数)一致。

声明:关于《无穷小的精确度》以上内容仅供参考,若您的权利被侵害,请联系13825271@qq.com
本文网址:http://www.25820.com/all/15_6800655.html