毕达哥拉斯是古希腊最著名的数学家,他门下有众多的弟子。在一次讲课中,他拿出四架天平分别在两边放上一些几何物体,这些物体只要形状相同,它的大小、重量就相等。毕达哥拉斯问弟子们:“你们谁能告诉我,根据前三架天平的状态来推算一下,第四架天平是不是平衡?”众弟子面面相觑,无人能够回答出来。你能否解答出毕达哥拉斯大师的谜题呢?
答案:第四架天平是平衡的。 假设=A,△=B,◇=C,□=D,根据图中的情况可以得出以下条件: 公式1:2A+3B=D; 公式2:C=4B+A; 公式3:D+A=3B+C。 所以可以得出下面的公式4: 2A+3B+C=D+4B+A,即A+C=B+D 由公式3+公式4可以得到公式5: 2A+C+D=4B+C+D,即A=2B 公式4+公式5可以得到2A+C=3B+D 由此可以看出这个结论正好和第四架天平情况吻合,所以天平得以保持平衡。