面积公式全套

更新时间:02-10 装修 由 淡昧 分享

数学的三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b《=》-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac》0 注:方程有一个实根 b2-4ac《0 注:方程有共轭复数根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n*2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F》0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c’*h 正棱锥侧面积 S=1/2c*h’ 正棱台侧面积 S=1/2(c+c’)h’ 圆台侧面积 S=1/2(c+c’)l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r 》0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S’L 注:其中,S’是直截面面积, L是侧棱长 柱体体积公式 ;V=s*h 圆柱体 V=pi*r2h 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角 圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标  圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F》0 抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c’*h 正棱锥侧面积 S=1/2c*h’ 正棱台侧面积 S=1/2(c+c’)h’ 圆台侧面积 S=1/2(c+c’)l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r 》0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h � 斜棱柱体积 V=S’L 注:其中,S’是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h倍角公式 tan2A=2tanA/ cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) � 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) ) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2  2+4+6+8+10+12+14+…+(2n)=n(n+1) 5 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3常用导数公式1.y=c(c为常数) y’=0 2.y=x^n y’=nx^(n-1) 3.y=a^x y’=a^xlna y=e^x y’=e^x 4.y=logax y’=logae/x y=lnx y’=1/x 5.y=sinx y’=cosx 6.y=cosx y’=-sinx 7.y=tanx y’=1/cos^2x 8.y=cotx y’=-1/sin^2x 9.y=arcsinx y’=1/√1-x^2 10.y=arccosx y’=-1/√1-x^2 11.y=arctanx y’=1/1+x^2 12.y=arccotx y’=-1/1+x^2 物理的在下面,贴不下,只好给链接了

面积的公式是什么

面积的公式是:

1、正方形:正方形的面积公式是“边长×边长”。

2、长方形:长方形的面积公式是“长×宽”。

3、梯形:梯形的面积公式是“(上底+下底)×高÷2”。

4、圆形:圆形的面积公式是“π×直径的平方”。

5、三角形:三角形的面积公式是“底×高÷2”。

面积的定义

物体所占的平面图形的大小,叫做它们的面积。面积就是所占平面图形的大小,平方米,平方分米,平方厘米,是公认的面积单位,用字母可以表示为(m,dm,cm)。

面积是表示平面中二维图形或形状或平面层的程度的数量。表面积是三维物体的二维表面上的模拟物。面积可以理解为具有给定厚度的材料的量,面积是形成形状的模型所必需的。

面积公式有哪些_

            1、长方形的周长=(长+宽)×2      2、正方形的周长=边长×4      3、长方形的面积=长×宽      4、正方形的面积=边长×边长      5、三角形的面积=底×高÷2      6、平行四边形的面积=底×高      7、梯形的面积=(上底+下底)×高÷2      8、直径=半径×2半径=直径÷2      9、圆的周长=圆周率×直径      10、圆周率×半径×2      11、圆的面积=圆周率×半径×半径      12、长方体的表面积=(长×宽+长×高+宽×高)×2      13、椭圆的面积S=πab的公式求椭圆的面积。a=b时,      14、当长半径a=3(厘米),短半径b=2(厘米)时,其面积S=3×2×π=6π(平方厘米)。      15、长方体的体积=长×宽×高      16、正方体的表面积=棱长×棱长×6      17、正方体的体积=棱长×棱长×棱长      18、圆柱的侧面积=底面圆的周长×高      19、圆柱的表面积=上下底面面积+侧面积      20、圆柱的体积=底面积×高

已知正六边形30cm 厚度10cm求面积和体积

正六边形的面积公式

所以对应的

正六边形面积是1350√3平方厘米

正六边形体积是13500√3立方厘米

梯形面积公式

梯形面积公式

1、梯形的面积公式:(上底+下底)×高÷2

梯形的面积等于上下两底之和与高的乘积的一半。如果梯形的上下两底分别用 a和 b表示,高用 h表示,梯形的面积s=(a+b)×h÷2 。

2、梯形的面积公式: 中位线×高

根据梯形中位线的长度等于上下两底和的一半,梯形的面积也等于中位线与高的乘积。如果梯形的中位线用 m表示,高用 h表示,梯形的面积s=mh 。

3、对角线互相垂直的梯形面积为:对角线×对角线÷2。

扩展资料

面积公式的推导:

两个完全一样的梯形,通过平移和旋转可以转化成一个平行四边形。

转化后,大平行四边形的面积=小梯形面积的2倍。

大平行四边形的底=梯形的上底+梯形的下底。

大平行四边形的高=梯形的高。

因为,平行四边形的面积=底×高,

所以,梯形的面积=(上底+下底)×高÷2。

参考资料来源:百度百科-梯形

梯形的面积公式是什么

1、梯形的面积公式:(上底+下底)×高÷2 

梯形的面积等于上下两底之和与高的乘积的一半。如果梯形的上下两底分别用 a和 b表示,高用 h表示,梯形的面积s=(a+b)×h÷2 。

2、梯形的面积公式: 中位线×高 

根据梯形中位线的长度等于上下两底和的一半,梯形的面积也等于中位线与高的乘积。如果梯形的中位线用 m表示,高用 h表示,梯形的面积s=mh 。

3、对角线互相垂直的梯形面积为:对角线×对角线÷2。

扩展资料:

梯形(trapezium)是指一组对边平行而另一组对边不平行的四边形。

等腰梯形的性质:

1.等腰梯形的两条腰相等  

2.等腰梯形在同一底上的两个底角相等

3.等腰梯形的两条对角线相等

4.等腰梯形是轴对称图形,对称轴是上下底中点的连线所在直线

5.等腰梯形(这个非等腰梯形同理)的中位线(两腰中点相连的线叫作中位线)等于上下底和的二分之一 。

6.梯形的中位线平行于两底。

所有的面积公式

长方形:S=ab 【长方形面积=长×宽】 正方形:S=a^2 【正方形面积=边长×边长】 平行四边形:S=ab 【平行四边形面积=底×高】 三角形:S=ab÷2 【三角形面积=底×高÷2】 梯形:S=(a+b)×h÷2【梯形面积=(上底+下底)×高÷2】 圆形(正圆):S=∏r^2【圆形(正圆)面积=圆周率×半径×半径】 圆形(正圆外环):S=∏R^2-∏r^2 【圆形(外环)面积=圆周率×外环半径×外环半径-圆周率×内环半径×内环半径】 圆形(正圆扇形):S=∏r^2×n/360 【圆形(扇形)面积=圆周率×半径×半径×扇形角度/360】 长方体表面积:S=2(ab+ac+bc) 【长方体表面积=(长×宽+长×高+宽×高)×2】 正方体表面积:S=6a^2 【正方体表面积=棱长×棱长×6】

长方形和正方形的表面积公式

长方形,和正方形只有面积,没有表面积公式。

1、长方体的表面积公式:

设一个长方体的长、宽、高分别为a、b、c,则它的表面积为S = (ab+bc+ca)×2,也等于2ab+2bc+2ca,还等于2(ab+bc+ca)。

公式:长方体的表面积=长×宽×2+宽×高×2+长×高×2,或:长方体的表面积=(长×宽+宽×高+长×高)×2。

2、正方体的表面积公式:

因为6个面全部相等,所以正方体的表面积=底面积×6=棱长×棱长×6

扩展资料:

一、长方体的特征

1、长方体有6个面。每组相对的面完全相同。

2、长方体有12条棱,相对的四条棱长度相等。按长度可分为三组,每一组有4条棱。

3、长方体有8个顶点。每个顶点连接三条棱。三条棱分别叫做长方体的长,宽,高。

4、长方体相邻的两条棱互相垂直。

二、正方体的特征

1、正方体有8个顶点,每个顶点连接三条棱。

2、正方体有12条棱,每条棱长度相等。

3、正方体有6个面,每个面面积相等。

参考资料来源:百度百科-正方体

参考资料来源:百度百科-长方体

声明:关于《面积公式全套》以上内容仅供参考,若您的权利被侵害,请联系13825271@qq.com
本文网址:http://www.25820.com/decorate/32_1760017.html