高性能混凝土是一种新型高技术混凝土,采用常规材料和工艺生产,具有混凝土结构所要求的各项力学性能,具有高耐久性、高工作性和高体积稳定性的混凝土。
高性能混凝土以耐久性作为设计的主要指标,针对不同用途要求,对下列性能重点予以保证:耐久性、工作性、适用性、强度、体积稳定性和经济性。为此,高性能混凝土在配置上的特点是采用低水胶比,选用优质原材料,且必须掺加足够数量的掺合料(矿物细掺料)和高效外加剂。
高性能混凝土的发展:
1950年5月,NIST和ACI首次提出了高性能混凝土的概念。但到目前为止,各国对高性能混凝土的要求和含义完全不同。
美国工程技术人员认为,高性能混凝土是一种易于浇注、捣实、不离析,能长期保持高强度、韧性和体积稳定性,在恶劣环境中使用寿命长的混凝土。根据美国混凝土协会的规定,这种混凝土不一定需要很高的抗压强度,但仍需达到55MPa以上,并需要具有很高的耐化学腐蚀性或其他性能。
以上内容参考:百度百科—高性能混凝土
1高性能混凝土是一种新型高技术混凝土。采用常规材料和工艺生产(主要依靠高效减水剂,或者同时外加一定数量的活性矿物掺合料,改善施工工艺),具有混凝土结构所要求的各项力学性能,具有高耐久性、高工作性能和高体积稳定性。这种混凝土特别适用于高层建筑、桥梁以及暴露在严酷环境中的建筑物。2.高强混凝土是用普通水泥、砂石作为原料,采用常规制作工艺(主要依靠高效减水剂,或者同时外加一定数量的活性矿物掺合料),使硬化后强度等级不低于C60的混凝土。3.番外3.1普通混凝土:干表观密度2000kg/m³--2800kg/m³的混凝土。3.2自密实混凝土:无需振捣,能够在自重作用下流动密实的混凝土。3.3纤维混凝土:掺加钢纤维或合成纤维作为增强材料的混凝土。3.4轻骨料混凝土:用轻粗骨料、轻砂或普通砂等配制的干表观密度不大于1950kg/m³的混凝土。3.5重混凝土:用重晶石等重骨料配制的干表观密度不大于2800kg/m³的混凝土。3.6再生骨料混凝土:全部或部分采用再生骨料作为骨料配制的混凝土。“超高强”指UHPC可实现水泥基材料强度 (抗压、抗拉、抗弯、抗剪、抗冲击等强度)跨越式的提高,更重要的是UHPC能够有效利用 钢纤维的强度及其与胶凝材料浆体的紧密粘接来实现拉伸的“应变硬化”行为(如图1所示,类似钢材的“屈服”),有较大的变形能力;钢纤维体积掺量1%~2%的UHPC就能跨入韧性材料的行列(见表1,断裂能超过1000N/m的材料被划分为韧性材料)。UHPC可大幅度提高钢在混凝 土中的强度利用效率,形成混凝土、钢纤维、钢筋更加协调的钢-混凝土复合的新模式,实现混凝土结构的轻质高强和高韧性。此外,还可制备具有优良耐磨、抗冲击、抗爆和耐高温等性能的UHPC。
超高性能混凝土(Ultra High Performance Concrete,简称UHPC)是以其“三高”而著称,即耐久性高、工作性高、强度高,被称为21世纪混凝土。在我国可持续发展战略中,随着绿色混凝土工程材料的推进和发展,超高强高性能混凝土在改善环境、提高经济效益、解决工程中的疑难问题等方面引起了专家们的极大关注。
常规C10、C15、C20、C25、C30混凝土配合比混凝土按强度分成若干强度等级,混凝土的强度等级是按立方体抗压强度标准值fcu,k划分的。立方体抗压强度标准值是立方抗压强度总体分布中的一个值,强度低于该值得百分率不超过5%,即有95%的保证率。混凝土的强度分为C7.5、C10、C15、C20、C25、C30、C35、C40、C45、C50、C55、C60等十二个等级。 混凝土配合比是指混凝土中各组成材料(水泥、水、砂、石)之间的比例关系。有两种表示方法:一种是以1立方米混凝土中各种材料用量,如水泥300千克,水180千克,砂690千克,石子1260千克;另一种是用单位质量的水泥与各种材料用量的比值及混凝土的水灰比来表示,例如前例可写成:C:S:G=1:2.3:4.2,W/C=0.6。 常用等级 C20 水:175kg水泥:343kg 砂:621kg 石子:1261kg 配合比为:0.51:1:1.81:3.68 C25 水:175kg水泥:398kg 砂:566kg 石子:1261kg 配合比为:0.44:1:1.42:3.17 C30 水:175kg水泥:461kg 砂:512kg 石子:1252kg 配合比为:0.38:1:1.11:2.72此试验数据为标准实验室获得,砂采用中砂,细度模数为2.94,碎石为5~31.5mm连续粒级。各等级混凝土配比也可以通过掺加外加剂来调整。混凝土标号与强度等级 长期以来,我国混凝土按抗压强度分级,并采用“标号”表征。1987年GBJ107-87标准改以“强度等级”表达。DL/T5057-1996《水工混凝土结构设计规范》,DL/T5082-1998《水工建筑物抗冰冻设计规范》,DL5108-1999《混凝土重力坝设计规范》等,均以“强度等级”表达,因而新标准也以“强度等级”表达以便统一称谓。水工混凝土除要满足设计强度等级指标外,还要满足抗渗、抗冻和极限拉伸值指标。不少大型水电站工程中重要部位混凝土,常以表示混凝土耐久性的抗冻融指标或极限拉伸值指标为主要控制性指标。 过去用“标号”描述强度分级时,是以立方体抗压强度标准值的数值冠以中文“号”字来表达,如200号、300号等。 根据有关标准规定,混凝土强度等级应以混凝土英文名称第一个字母加上其强度标准值来表达。如C20、C30等。 水工混凝土仅以强度来划分等级是不够的。水工混凝土的等级划分,应是以多指标等级来表征。如设计提出了4项指标C9020、W0.8、F150、εp0.85×10-4,即90 d抗压强度为20 MPa、抗渗能力达到0.8 MPa下不渗水、抗冻融能力达到150次冻融循环、极限拉伸值达到0.85×10-4。作为这一等级的水工混凝土这4项指标应并列提出,用任一项指标来表征都是不合适的。作为水电站枢纽工程,也有部分厂房和其它结构物工程,设计只提出抗压强度指标时,则以强度来划分等级,如其龄期亦为28 d,则以C20、C30表示。 2 混凝土强度及其标准值符号的改变 在以标号表达混凝土强度分级的原有体系中,混凝土立方体抗压强度用“R”来表达。 根据有关标准规定,建筑材料强度统一由符号“f”表达。混凝土立方体抗压强度为“fcu”。其中,“cu”是立方体的意思。而立方体抗压强度标准值以“fcu,k”表达,其中“k”是标准值的意思,例如混凝土强度等级为C20时,fcu,k=20N/mm2(MPa),即立方体28d抗压强度标准值为20MPa。 水工建筑物大体积混凝土普遍采用90d或180d龄期,故在C符号后加龄期下角标,如C9015,C9020指90d龄期抗压强度标准值为15MPa、20MPa的水工混凝土强度等级,C18015则表示为180d龄期抗压强度标准值为15MPa。 3 计量单位的变化 过去我国采用公制计量单位,混凝土强度的单位为kgf/cm2。
高性能混凝土(High performance concrete,简称HPC)是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土。它以耐久性作为设计的主要指标,针对不同用途要求,对下列性能重点予以保证:耐久性、工作性、适用性、强度、体积稳定性和经济性。可见高强只是高性能的一种
1950年5月美国国家标准与技术研究院(NIST)和美国混凝土协会(ACI)首次提出高性能混凝土的概念。但是到目前为止,各国对高性能混凝土提出的要求和涵义完全不同。美国的工程技术人员认为:高性能混凝土是一种易于浇注、捣实、不离析,能长期保持高强、韧性与体积稳定性,在严酷环境下使用寿命长的混凝土。美国混凝土协会认为:此种混凝土并不一定需要很高的混凝土抗压强度,但仍需达到55MPa以上,需要具有很高的抗化学腐蚀性或其他一些性能。日本工程技术人员则认为,高性能混凝土是一种具有高填充能力的的混凝土,在新拌阶段不需要振捣就能完善浇注;在水化、硬化的早期阶段很少产生有水化热或干缩等因素而形成的裂缝;在硬化后具有足够的强度和耐久性。加拿大的工程技术人员认为,高性能混凝土是一种具有高弹性模量、高密度、低渗透性和高抗腐蚀能力的混凝土。综合各国对高性能混凝土的要求,可以认为,高性能混凝土具有高抗渗性(高耐久性的关键性能);高体积稳定性(低干缩、低徐变、低温度变形和高弹性模量);适当的高抗压强度;良好的施工性(高流动性、高粘聚性、自密实性)。中国在《高性能混凝土应用技术规程》(CECS207-2006)对高性能混凝土定义为:采用常规材料和工艺生产,具有混凝土结构所要求各项力学性能,具有高耐久性、高工作性和高体积稳定性的混凝土。高性能混凝土的技术路线高性能混凝土是由高强混凝土发展而来的,但高性能混凝土对混凝土技术性能的要求比高强混凝土更多、更广乏,高性能混凝土的发展一般可分为三个阶段:(1)振动加压成型的的高强混凝土——工艺创新在高效减水剂问世以前,为获得高强混凝土,一般采用降低W/C(水灰比),强力振动加压成型。即将机械压力加到混凝土上,挤出混凝土中的空气和剩余水分,减少孔隙率。但该工艺不适合现场施工,难以推广,只在混凝土预制板、预制桩的生产,广泛采用,并与蒸压养护共同使用。(2)掺高效减水剂配置高效混凝土——第五组分创新20世纪50年代末期出现高效减水剂是高强混凝土进入一个新的发展阶段。代表性的有萘系、三聚氰胺系和改性木钙系高效减水剂,这三个系类均是普遍使用的高效减水剂。采用普通工艺,掺加高效减水剂,降低水灰比,可获得高流动性,抗压强度为60~100MPa的高强混凝土,是高强混凝土获得广泛的发展和应用。但是,仅用高效减水剂配制的混凝土,具有坍落度损失较大的问题。(3)采用矿物外加剂配制高性能混凝土——第六组分创新20世纪80年代矿物外加剂异军突起,发展成为高性能混凝土的第六组分,它与第五组分相得益彰,成为高性能混凝土不可缺少的部分。就现在而言,配制高性能混凝土的技术路线主要是在混凝土中同时掺入高效减水剂和矿物外加剂。配制高性能混凝土的矿物外加剂,是具有高比表面积的微粉辅助胶凝材料。例如:硅灰、细磨矿渣微粉、超细粉煤灰等,它是利用微粉填隙作用形成细观的紧密体系,并且改善界面结构,提高界面粘结强度。
据了解,目前混凝土强度等级常温养护有C200,高温养护最高强度达到C800(也就是抗压强度达到800MPa),称作超高性能混凝土(UHPC)或活性粉末混凝土(RPC)。不过,C800、C400都是试验室试块的抗压强度纪录。真正实际应用的超高性能混凝土,强度范围在150~250MPa,也就是C150,C250。国内也能做到这个强度水平,但还没有广泛应用。
表1:普通混凝土、高性能混凝土和超高性能混凝土(活性粉末混凝土)材料性能对比 普通混凝土NSC 高性能混凝土HPC 超高性能混凝土UHPC 抗压强度(MPa) 20-40 40-96 170-227 水胶比 0.40-0.70 0.24-0.35 0.14-0.27 圆柱劈裂抗拉强度(MPa) 2.5-2.8 -- 6.8-24 最大骨料粒经(mm) 19-25 9.5-13 0.4-0.6 孔隙率 20-25% 10-15% 2-6% 孔尺寸(mm) -- -- 0.000015 韧性 -- -- 比NSC大250倍 断裂能(kN-m/m) 0.1-15 -- 10-40 弹性模量(GPa) 14-41 31-55 55-62 断裂模量(第一条裂缝)(MPa) 2.8-4.1 5.5-8.3 16.5-22.0 极限抗弯强度(MPa) 20-62 透气性k(24小时40C)(mm) 3x10 0 0 吸水性(225小时)(kg/mm) 2x10 2.4x10 3.5x10 氯离子扩散系数(稳定状态扩散)(mm/s) 1x10 4.9x10 2x10 二氧化碳/硫酸盐渗透 -- -- 无 抗冻融性能 10%耐久 90%耐久 100%耐久 抗表面剥蚀性能 表面剥蚀量》1 表面剥蚀量0.08 表面剥蚀量0.01 泊松比 0.11-0.21 -- 0.19-0.24 徐变系数,Cu 2.35 1.6-1.9 0.2-0.8 收缩 -- 养护后40-80x10 养护后《x10无自生收缩 流动性(工作性)(mm) 测量坍落度 测量坍落度 150-155 含气量 4-8% 2-4% 0 超高性能混凝土的设计理论是最大堆积密度理论(densified particle packing),其组成材料不同粒径颗粒以最佳比例形成最紧密堆积,即毫米级颗粒(骨料)堆积的间隙由微米级颗粒(水泥、粉煤灰、矿粉)填充,微米级颗粒堆积的间隙由亚微米级颗粒(硅灰)填充。早在1931年,Andressen就建立了最大堆积密度理论的数学模型。然而,直到上世纪七十年代末,在高效减水剂技术与产品性能大幅度提高的基础上,采用该模型设计配制的第一代超高性能混凝土才在丹麦奥尔堡Cement og Beton Laboratiet(水泥与混凝土试验室)诞生,称作CRC(Compact Reinforced Composite,密实增强复合材料)。CRC与目前的UHPC达到基本相同的力学性能,最高抗压强度超过400MPa,使用烧结铝矾土作骨料,同时使用钢纤维提高材料的韧性,所以称作“复合材料”。受到当时高效减水剂性能的限制,CRC或早期UHPC比较粘滞,振捣密实较困难,还不便于现浇应用。上世纪九十年代,欧洲开展了合作研究项目,世界各地也广泛开展相关研究,这种材料获得一个新名称“活性粉末混凝土,简称RPC”。“超高性能混凝土UHPC”的名称形成于本世纪,因为与早期的CRC或RPC相比,随着设计理论的完善、超高效减水剂(聚羧酸系)问世和配制技术的进步,这种材料已具备了普通混凝土的施工性能,甚至可以实现自密实,可以常温养护,已经具备广泛应用的条件。UHPC与普通混凝土或高性能混凝土不同的方面包括:不使用粗骨料,必须使用硅灰和纤维(钢纤维或复合有机纤维),水泥用量较大,水胶比很低。UHPC的组成见表2。表2:超高性能混凝土UHPC基本组成 kg/m 重量百分含量% 波特兰水泥(V型) 700-1010 27.0-38.0 硅灰 230-320 8.5-9.5 磨细石英砂 0-230 0.0-8.0 细砂 760-1050 39.0-41.0 金属纤维(~0.2x12.7mm) 150-190 5.5-8.0 高效减水剂 15-25 0.5-1.0 水 155-210 5.5-8.0 水/胶凝材料比 0.14-0.27 -- UHPC堪称耐久性最好的工程材料,适当配筋的UHPC力学性能接近刚结构,同时UHPC具有优良的耐磨、抗爆性能。因此,UHPC特别适合用于大跨径桥梁、抗爆结构(军事工程、银行金库等)和薄壁结构,以及用在高磨蚀、高腐蚀环境。目前,UHPC已经在一些实际工程中应用,如大跨径人行天桥、公路铁路桥梁(实例见表3)、薄壁筒仓、核废料罐、钢索锚固加强板、ATM机保护壳,等等。可以预计,还会有越来越多的应用。表3:法国第一座UHPC公路桥梁混凝土组成和性能 组成材料 kg/m 性能 波特兰水泥 1114 坍落流动度 630~640 mm 硅灰 169 28d 特征抗压强度(fck) 175 MPa 0-6mm骨料 1072 28d 特征抗拉强度(ftk) 8 MPa 纤维: 0.3mm直径x20mm长 234 28d 特征裂后抗拉强度 9.1 MPa 高效减水剂 40 弹性模量 64 GPa 水 209 比重 2800 kg/m 水/胶凝材料比 0.19 参考文献:3rd International Symposium on HPC Proceedings: October 19-22, 2003 in Orlando, FL
超高性能混凝土(以下简称UHPC)是近三十年内发展起来的一种新型水泥基复合材料,具有超高的力学性能和耐久性,并兼具良好的韧性、黏结性能和抗冲击、抗疲劳性能。近年来,随着UHPC制备技术的不断成熟,其性能的优越性逐步被大众认知,UHPC成为混凝土领域的研究热点,广泛用于结构、装饰、加固、快修、铺装、接缝填注等。但由于其成本较高,现阶段国内外UHPC的应用技术研究与试点工程主要停留在桥梁工程、建筑外墙装饰工程以及少量既有混凝土建筑的维修加固工程。许多专家学者积极探索UHPC在建筑结构工程中应用的可行性,其中,装配式建筑领域的应用备受关注。从UHPC的分类出发,分析UHPC在装配式建筑领域的应用前景,在此基础上提出装配式建筑用UHPC的质量控制指标体系,以期推动UHPC在装配式建筑领域的应用。1.UHPC分类根据对UHPC应用现状的调研,UHPC的主要应用工程类别及部位如下:(1)桥梁工程,包括现浇桥面铺装、桥梁湿接缝、预制桥面板、桥面铺装、预制箱梁;(2)建筑工程,包括建筑外墙装饰板、小型预制构件(楼梯、阳台)、装配式预制构件节点连接;(3)市政工程,包括预制盖板、预制综合管廊、基础设施结构加固等。综合UHPC用途与原材料组成体系的不同,将UHPC分为结构类UHPC和装饰类UHPC,见表1。2.UHPC在装配式建筑中的应用2.1 建筑外墙装饰UHPC用于建筑外墙装饰是UHPC最重要也是最为广泛的应用领域之一,包括镂空幕墙、遮阳板、三明治保温墙板、干挂或湿贴装饰面板等。UHPC以其超高强度、超高韧性和超高耐久性,使其能够在满足结构承载力的要求下,减少结构横截面的尺寸,做到轻质薄壁,让建筑设计师可以突破材料的束缚,设计出轻盈优美的结构外形。以法国马塞Marseille圣让港的欧洲和地中海文化博物馆(以下简称MuCEM)为例,其镂空围护幕墙由UHPC建造而成,制作精美。精致华丽的花纹体现了地中海文化和手工艺的悠久传统,同时也突出展现了超高性能材料在建筑装饰领域优越的综合性能和巨大的应用潜力。
1400kg/m³左右
2400kg/M3左右
超高性能混凝土(Ultra High Performance Concrete,简称UHPC)是以其“三高”而著称,即耐久性高、工作性高、强度高,被称为21世纪混凝土。在我国可持续发展战略中,随着绿色混凝土工程材料的推进和发展,超高强高性能混凝土在改善环境、提高经济效益、解决工程中的疑难问题等方面引起了专家们的极大关注。