是什么意思数学符号

更新时间:02-09 装修 由 曼雁 分享

高中数学符号大全及表达意思:

1、∞ 无穷大。

2、π  圆周率。

3、|x| 绝对值。

4、∪ 并集。

5、∩ 交集。

6、≥ 大于等于。

7、≤ 小于等于。

8、≡ 恒等于或同余。

9、ln(x) 以e为底的对数。

9、lg(x) 以10为底的对数。

10、floor(x) 上取整函数。

11、ceil(x) 下取整函数。

12、x mod y 求余数。

13、x - floor(x) 小数部分。

14、∫f(x)dx 不定积分。

高中数学学习方法:

1、熟练掌握课本知识

学习高中数学一定要熟练掌握课本知识,例如高一要学习三角函数的公式推导,高二要学习的立体几何中线段的长度计算,都是要经过复杂的推导。如果没有对课本知识的掌握,只是记住公式,套用公式,题目稍微变换一下,就做不出来。根本原因是对课本知识点掌握的不透彻。

掌握课本知识要预习课本知识,上课要认真听老师讲解课本知识,不懂的一定要问,课后要复习,一定要复习,如果复习之后还有不懂的,说明上课没听懂。要及时的把不懂的弄明白。

2、要多动脑筋思考

在上课前预习知识的时候,一定要动脑思考课本的知识,理解课本中的定义和定理。课本中的定理证明和公式推导一定要自己动手去做一做,如果做不出来,不要看课本,自己动脑思考,只有自己动脑筋想出来的,才是最宝贵的。

遇到不懂的,不要总是想着问,要先动脑筋思考。做题目也是,不要直接翻看答案,要动脑筋思考,如果实在想不出来,才看答案,或者问老师解题思路。

3、多做数学练习

有些学生只是看书,对课本知识掌握的很好,书本内容也能举一反三,这样非常好,只是离熟练掌握知识,考取高分还有些差距。课本的内容算是概括性的知识,还不够全面,掌握课本知识可以帮助解答难题,但不等于会解难题。

作为高中生,应该购买课外练习书籍,可以买纯解题型的参考书,也可以买既有练习题、又有详细解答的参考书。考试大纲在课本,可是考试题目可能千变万化。需要通过练习,增加对课本知识点的理解,通过做题对知识点知道的更全面。

数学符号的含义

数学符号“△”表示三角形。

在数学中,对于三角形的书写在计算过程中比较复杂,通常使用“△”来代替“三角形”三个字,比如在描述有ABC三个点构成的三角形时,为了简便的书写,常使用“△ABC”来表示。

扩展资料:

数学中三角形常用的一些性质:

1 、在平面上三角形的内角和等于180°(内角和定理)。

2 、在平面上三角形的外角和等于360° (外角和定理)。

3、 在平面上三角形的外角等于与其不相邻的两个内角之和。

推论:三角形的一个外角大于任何一个和它不相邻的内角。

4、 一个三角形的三个内角中最少有两个锐角。

5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。

数学符号是什么意思

数学符号*是乘号的意思。*还表示除0之外的数,例:N*表示正整数。

我们现在常用于乘法运算的符号有两个,一个是“×”,另一个是“·”。 “×”是由1631年英国数学家奥雷特最早提出的,“·”是由英国数学家赫锐奥特首创的。

其他信息

在Microsoft Word中可以插入一般应用条件下的所有数学符号,以Word2010及2010版以上软件为例介绍操作方法:

打开Word2010文档窗口,单击需要添加数学符号的公式,并将插入条光标定位到目标位置。

在“公式工具/设计”功能区的“符号”分组中,单击“其他”按钮打开符号面板。默认显示的“基础数学”符号面板。用户可以在“基础数学”符号面板中找到最常用的数学符号。同样地,Alt+41420(即压下Alt不放,依次按41420(小键盘),最后放开Alt 就可以打出 √。

数学符号“|”是什么意思

数学符号“|”是离散数学符号的一种,限制集合关于关系s的等价类。数学表达式{A|B}的意思是:表示集合A,A的取值表达式为B。

所以例4的第2小题中的{x|x²-5x+6=0}意思是集合{x},x的取值范围是x²-5x+6=0,也就是{x=-3或x=-2}。

扩展资料:

数学符号的意义:

人类的一切智力活动认识活动,都直接或间接地建立在符号的基础上。当代数学符号是经历了漫长的历史而形成和发展起来的。借助于符号使数学更加简便了数学符号使数学发展的速度加快了。可以说,数学是数学符号的学问。

当代数学符号大致分为4类:用符号表示数与量;用符号表示某种运算,即运算符号;用符号表示某种关系,即关系符号;仅仅作为记号的一种符号。

研究数学问题的方法之一是明白数学符号的含义,灵活运用数学符号。这样,就能更有效地从实际问题中概括出变量之间的关系,并用数学符号来表示。用数学符号代表数量关系和变化规律,是用抽象的方法进一步表明数学问题的内部联系。

数学符号是*什么意思

数学符号*是乘号的意思。*还表示除0之外的数,例:N*表示正整数。

我们现在常用于乘法运算的符号有两个,一个是“×”,另一个是“·”。 “×”是由1631年英国数学家奥雷特最早提出的,“·”是由英国数学家赫锐奥特首创的。

而德国数学家莱布尼茨则认为,“×”号与拉丁字母表示未知数的“X”很像,运算时容易混淆,因此加以反对。但他赞成用“·”来替代“×”。因此德国的数学书中,乘号与世界其他国家是不一样的。

后莱布尼茨又提出用“п”符号表示相乘,但未得到认可,现在却被用到了集合论中去。18世纪,美国数学家欧德莱认为,乘法就是一种特殊的增加,“×”是斜起来写的“+”,用它表示相乘最合适,于是他确定用“×”表示两数相乘,“×”就被用作乘法运算了。

扩展资料

乘法相关历史:

乘法口诀(也叫“九九歌”)在我国很早就已产生。远在春秋战国时代,九九歌就已经广泛地被人们利用着。在当时的许多著作中,已经引用部分乘法口诀。

最初的九九歌是以“九九八十一”起到“二二如四”止,共36句口诀。

发掘出的汉朝“竹木简”以及敦煌发现的古“九九术残木简”上都是从“九九八十一”开始的。“九九”之名就是取口诀开头的两个字。公元5~10世纪间,“九九”口诀扩充到“一一如一”。

大约在宋朝(公元11、12世纪),九九歌的顺序才变成和现代用的一样,即从“一一如一”起到“九九八十一”止。

元朱世杰著《算学启蒙》一书所载的45句口诀,已是从“一一”到”九九“,并称为九数法。现在用的乘法口诀有两种,一种是45句的,通常称为小九九;还有一种是81句的,通常称为大九九。书中记载,大九九最早见于清陈杰著的《算法大成》。

数学符号是什么意思 数学符号解释

1、数学符号的发明及使用比数字要晚,但其数量却超过了数字。现代数学常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。 2、例如加号曾经有好几种,现代数学通用“+”号。“+”号是由拉文“et”(“和”的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文“plu”(“加”的意思)的第一个字母表示加,草为“μ”最后都变成了“+”号。“-”号是从拉丁文“minus”(“减”的意思)演变来的,一开始简写为m,再因快速书写而简化为“-”了。 3、也有人说,卖酒的商人用“-”表示酒桶里的酒卖了多少。以后,当把新酒灌入大桶的时候,就在“-”上加一竖,意思是把原线条勾销,这样就成了个“+”号。 4、到了十五世纪,德国数学家魏德美正式确定:“+”用作加号,“-”用作减号。 5、乘号曾经用过十几种,现代数学通用两种。一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是“·”,最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:“×”号像拉丁字母“X”,可能引起混淆而加以反对,并赞成用“·”号(事实上点乘在某些情况下亦易与小数点相混淆)。后来他还提出用“∩“表示相乘。这个符号在现代已应用到集合论中了。 6、到了十八世纪,美国数学家欧德莱确定,把“×”作为乘号。他认为“×”是“+”的旋转变形,是另一种表示增加的符号。 7、“÷”最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用“:”表示除或比,另外有人用“-”(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将“÷”作为除号。 8、平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家笛卡儿在他的《几何学》中,第一次用“√”表示根号。“√”是由拉丁字线“r”的变形,“ ̄”是括线。 9、十六世纪法国数学家维叶特用“=”表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号“=”就从1540年开始使用起来。 10、1591年,法国数学家韦达在菱形中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了“=”号,他还在几何学中用“∽”表示相似,用“≌”表示全等。 11、大于号“》”和小于号“

数学上的符号都代表什么意思

数学集合符号都有:N、N+、Z、Q、R、C等。具体介绍如下:

1、全体非负整数的集合通常简称非负整数集(或自然数集),记作N。

2、非负整数集内排除0的集,也称正整数集,记作N+(或N*)。

3、全体整数的集合通常称作整数集,记作Z。

4、全体有理数的集合通常简称有理数集,记作Q。

5、全体实数的集合通常简称实数集,记作R。

6、复数集合计作C。

扩展资料:

1、集合,是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。例如全中国人的集合,它的元素就是每一个中国人。我们通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。

2、元素与集合的关系有:“属于”与“不属于”两种。

3、集合的运算:

(1)集合交换律:A∩B=B∩A;A∪B=B∪A。

(2)集合结合律:(A∩B)∩C=A∩(B∩C);(A∪B)∪C=A∪(B∪C)。

(3)集合分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。

数学符号:=是什么意思

=是普通等号(关系运算符)。

其他关系符号:

“≈”是近似符号(即约等于),“≠”是不等号,“》”是大于符号,“《”是小于符号,“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于),“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是正比例符号(表示反比例时可以利用倒数关系)。

数学符号的发展历程

例如加号曾经有好几种,现代数学通用“+”号。“+”号是由拉文“et”(“和”的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文“plu”(“加”的意思)的第一个字母表示加,草为“μ”最后都变成了“+”号。“-”号是从拉丁文“minus”(“减”的意思)演变来的,一开始简写为m,再因快速书写而简化为“-”了。

是什么数学符号啊表示什么意思

Sigma(大写Σ,小写σ,中文音译:西格马),是第十八个希腊字母。在希腊语中,若果一个单字的最末一个字母是小写sigma,要把该字母写成 ς,此字母又称final sigma(Unicode: U+03C2)。其在现代的希腊数字代表6。Σ用于:● 数学上的总和符号(又称和式号)● 洛克人X中的西格马(Sigma),X和Zero的长期敌人小写σ用于:● σ键,一类原子轨道“头碰头“形成的化学键● 统计学上的标准差以“Σ“来表示和式号(Sign of summation)是欧拉(1707-1783)于1755年首先使用的,这个符号是源于希腊文(增加)的字头,“Σ“正是σ的大写。示例:ΣAn=A1+A2+...+An∑是数列求和的简记号,它后面的k^2是通项公式,下面的k=1是初始项开始的项数,顶上的n是末项的项数。n∑k^2=1^2+2^2+……+n^2(1)k=1n∑(2k+1)=3+5+……+(2n+1)(2)k=1则(1)+(2)=n∑(k+1)^2=2^2+3^2+……+(n+1)^2k=1著名的二项式定理的展开式可以表示成n∑C(n,k)a^(n-k)b^k.k=0由此可见应用的可能,它的应用是相当灵活的。

标签: # 符号 # 数学
声明:关于《是什么意思数学符号》以上内容仅供参考,若您的权利被侵害,请联系13825271@qq.com
本文网址:http://www.25820.com/decorate/32_1789450.html