电磁感应(Electromagnetic induction)现象是指放在变化磁通量中的导体,会产生电动势。此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流(感生电流)。迈克尔·法拉第是一般被认定为于1831年发现了电磁感应的人,虽然弗朗切斯科·桑特代斯基(Francesco Zantedeschi)在1829年的工作可能对此有所预见。电磁感应是指因为磁通量变化产生感应电动势的现象。电磁感应现象的发现,是电磁学领域中最伟大的成就之一。它不仅揭示了电与磁之间的内在联系,而且为电与磁之间的相互转化奠定了实验基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力和科学技术的发展发挥了重要的作用。若闭合电路为一个n匝的线圈,则瞬时电动势又可表示为:ε =n*ΔΦ/Δt(Δt→0)。式中n为线圈匝数,ΔΦ为磁通量变化量,单位Wb(韦伯) ,Δt为发生变化所用时间,单位为s(秒)。ε 为产生的感应电动势,单位为V(伏特,简称伏)。电磁感应俗称磁生电,多应用于发电机。
变压器的基本原理是电磁感应原理,现以单相双绕组变压器为例说明其基本工作原理(如上图):当一次侧绕组上加上电压Ú1时,流过电流Í1,在铁芯中就产生交变磁通Ø1,这些磁通称为主磁通,在它作用下,两侧绕组分别感应电势É1,É2,感应电势公式为:E=4.44fNØm式中:E--感应电势有效值 f--频率 N--匝数 Øm--主磁通最大值 由于二次绕组与一次绕组匝数不同,感应电势E1和E2大小也不同,当略去内阻抗压降后,电压Ú1和Ú2大小也就不同。 当变压器二次侧空载时,一次侧仅流过主磁通的电流(Í0),这个电流称为激磁电流。当二次侧加负载流过负载电流Í2时,也在铁芯中产生磁通,力图改变主磁通,但一次电压不变时,主磁通是不变的,一次侧就要流过两部分电流,一部分为激磁电流Í0,一部分为用来平衡Í2,所以这部分电流随着Í2变化而变化。当电流乘以匝数时,就是磁势。 上述的平衡作用实质上是磁势平衡作用,变压器就是通过磁势平衡作用实现了一、二次侧的能量传递。变压器工作原理动画演示http://www.52data.cn/dlsb/bdsb/byq/200701/12540.html
闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应。电磁感应的几个基本规律,主要涉及右手定则、楞次定律、安培力等内容。
简单讲就是利用磁性来发电,发电机就是利用这个而发明的。你可以自己做做,拿条电线两端接在电流表两极上,再拿块磁条来回空过电线围成的这个圈,同时注意电流表的变化,你看到的就是电磁感应。
电磁感应是指因为磁通量变化产生感应电动势的现象。电磁感应现象的发现,是电磁学领域中最伟大的成就之一。它不仅揭示了电与磁之间的内在联系,而且为电与磁之间的相互转化奠定了实验基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力和科学技术的发展发挥了重要的作用。
若闭合电路为一个n匝的线圈,则又可表示为:式中n为线圈匝数,ΔΦ为磁通量变化量,单位Wb(韦伯) ,Δt为发生变化所用时间,单位为s.ε 为产生的感应电动势,单位为V(伏特,简称伏)。电磁感应俗称磁生电,多应用于发电机。、
迈克尔·法拉第是一般被认定为于1831年发现了感应现象的人,虽然Francesco Zantedeschi1829年的工作可能对此有所预见。 重要实验 在一个空心纸筒上绕上一组和电流计联接的导体线圈,当磁棒插进线圈的过程中,电流 电磁感应计的指针发生了偏转,而在磁棒从线圈内抽出的过程中,电流计的指针则发生反方向的偏转,磁棒插进或抽出线圈的速度越快,电流计偏转的角度越大.但是当磁棒不动时,电流计的指针不会偏转。
对于线圈来说,运动的磁棒意味着它周围的磁场发生了变化,从而使线圈感生出电流.法拉第终于实现了他多年的梦想——用磁的运动产生电!奥斯特和法拉第的发现,深刻地揭示了一组极其美妙的物理对称性:运动的电产生磁,运动的磁产生电。
电磁感应现象是指放在变化磁通量中的导体,会产生电动势。此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流(感生电流)迈克尔·法拉第是一般被认定为于1831年发现了感应现象的人,虽然Francesco Zantedeschi1829年的工作可能对此有所预见。重要实验:在一个空心纸筒上绕上一组和电流计联接的导体线圈,当磁棒插进线圈的过程中,电流,电磁感应计的指针发生了偏转,而在磁棒从线圈内抽出的过程中,电流计的指针则发生反方向的偏转,磁棒插进或抽出线圈的速度越快,电流计偏转的角度越大。但是当磁棒不动时,电流计的指针不会偏转。对于线圈来说,运动的磁棒意味着它周围的磁场发生了变化,从而使线圈感生出电流。法拉第终于实现了他多年的梦想——用磁的运动产生电! 奥斯特和法拉第的发现,深刻地揭示了一组极其美妙的物理对称性:运动的电产生磁,运动的磁产生电。不仅磁棒与线圈的相对运动可以使线圈出现感应电流,一个线圈中的电流发生了变化,也可以使另一个线圈出现感应电流。将线圈通过开关k与电源连接起来,在开关k合上或断开的过程中,线圈2就会出现感应电流。 如果将与线圈1连接的直流电源改成交变电源,即给线圈1提供交变电流,也引起线圈出现感应电流。 这同样是因为,线圈1的电流变化导致线圈2周围的磁场发生了变化。
采用磁感应原理时,利用从测头经过非铁磁覆层而流入铁磁基体的磁通的大小,来测定覆层厚度。也可以测定与之对应的磁阻的大小,来表示其覆层厚度。覆层越厚,则磁阻越大,磁通越小。利用磁感应原理的测厚仪,原则上可以有导磁基体上的非导磁覆层厚度。一般要求基材导磁率在500以上。如果覆层材料也有磁性,则要求与基材的导磁率之差足够大(如钢上镀镍)。当软芯上绕着线圈的测头放在被测样本上时,仪器自动输出测试电流或测试信号。早期的产品采用指针式表头,测量感应电动势的大小,仪器将该信号放大后来指示覆层厚度。一些电路设计引入稳频、锁相、温度补偿等地新技术,利用磁阻来调制测量信号。还采用专利设计的集成电路,引入微机,使测量精度和重现性有了大幅度的提高(几乎达一个数量级)。现代的磁感应测厚仪,分辨率达到0.1um,允许误差达1%,量程达10mm。磁性原理测厚仪可应用来精确测量钢铁表面的油漆层,瓷、搪瓷防护层,塑料、橡胶覆层,包括镍铬在内的各种有色金属电镀层,以及化工石油待业的各种防腐涂层。
电磁感应定律也叫法拉第电磁感应定律,电磁感应现象是指因磁通量变化产生感应电动势的现象,例如,闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中就会产生电流,产生的电流称为感应电流,产生的电动势(电压)称为感应电动势。电磁感应定律中电动势的方向可以通过楞次定律或右手定则来确定。右手定则内容:伸平右手使拇指与四指垂直,手心向着磁场的N极,拇指的方向与导体运动的方向一致,四指所指的方向即为导体中感应电流的方向(感应电动势的方向与感应电流的方向相同)。楞次定律指出:感应电流的磁场要阻碍原磁通的变化。简而言之,就是磁通量变大,产生的电流有让其变小的趋势;而磁通量变小,产生的电流有让其变大的趋势。