泡沫陶瓷材料是一种高温特性的多孔材料,发展始于20世纪70年代。孔径从纳米级到微米级不等,气孔率在20%~95%之间,使用温度为常温~1600℃。泡沫陶瓷一般可以分为两类,开孔陶瓷材料和闭孔陶瓷材料,主要区别在各孔穴是否具有固体壁面。如形成泡沫体的固体只包含在孔棱中,称为开孔陶瓷材料,其孔隙相互连通;存在固体壁面,则称为闭孔陶瓷材料,孔穴由连续的陶瓷基体相互分隔。大部分泡沫陶瓷既存在开孔孔隙又存在少量闭孔孔隙。
微孔膜陶瓷分离膜耐酸堿、耐侵蚀、耐高温、抗老化、使用寿命长,被开发应用于食品工业、生物化工、能源工程、环境工程等多个领域。近年来,多孔陶瓷更是广泛应用到航空领域、电子领域、医用材料领域及生物化学领域等。
食品、卫生行业用泡沫陶瓷材料泡沫陶瓷耐高温、耐腐蚀和生物、化学特性良好,可用于医药工业中的酶、病毒、疫苗等生理活性物质的浓缩、分离、精制等。
在食品、饮料工业中,特别适用于对色、香、味要求高的饮料及低度酒类的过滤。
随着现代工业的发展,各行业生产排放的有害气体和废水如处理不当,严重影响人类的生存环境,泡沫陶瓷应用于汽车催化转化器。
除臭用泡沫陶瓷催化器能让废水除臭净化。耐高温、强度大的抗热震性能的高渗透性泡沫陶瓷可有效除去高温含尘气体。城市污水处理过程中,泡沫陶瓷材料成为曝气处理材料之一。
隔热材料泡沫陶瓷热传导率低、抗热震性能优良,由泡沫陶瓷制作的“超级绝热材料”耐热砖,使用温度高达1600℃,成为目前世界上最好的隔热材料,被应用于太空梭外壳的隔热及导弹头的强迫发汗等。
部分图片来源:360。
自1978年美国发明了利用氧化铝、高岭土等陶瓷料浆成功研制出泡沫陶瓷,用于铝合金铸造过滤之后,英、日、德、瑞士等国家竞相开展了研究,生产工艺日益先进,技术装备越来越向机械化、自动化发展,已研制出多种材质,适合于不同用途的泡沫陶瓷过滤器,如A12O3、ZrO2、SiC、氮化硅、硼化物等高温泡沫陶瓷,有的还加入了一定的矿物,如莫来石、堇青石、粉煤灰、煤矸石等,产品已系列化、标准化,形成了一个新兴产业,其分类如表所示。
根据成孔方法和孔隙结构,多孔陶瓷可分为三类:①粒状陶瓷; ②泡沫陶瓷;③蜂窝陶瓷。可以添加有机微球来造孔
名称陶瓷过滤板由氧化铝陶瓷过滤板,碳化硅陶瓷过滤板及氧化锆陶瓷过滤板三大类组成。性状三维立体网络均匀骨骼结构,呈粉红色或白色块状物 特点可有效去除铝液中大块夹杂物,并吸附微米尺寸的细小夹杂物粒子,起到提高表面质量、提高产品性能、改善显微组织的作用,提高成品率。在铝型材、铝箔、铝合金等生产领域广泛应用。 1、清洁过滤箱。2、轻轻把过滤板放入过滤箱内,并用手压紧过滤板周围的密封衬垫,以防铝液旁流。3、均匀预热过滤箱和过滤板,使之接近铝液温度。预热以除去水份,并有利于初始的瞬间过滤。预热可采用电或燃气加热来实施。正常情况下,约需15--30分钟。4、浇铸时注意观察铝液压头的变化,正常起始压头是100-150㎜。当铝液开始通过时,压头会降至75--100㎜以下,随后压头会慢慢有所增加。5、正常过滤过程中,避免敲击、振动过滤板。同时应使流槽充满铝水,避免铝水太大的扰动。6、过滤结束后,及时取出过滤板,清洁过滤箱。 产品规格及型号本标准对产品的型号,采用目前习惯称谓多少P来表示,英文字母P前面的数字代表产品的孔密度,且与孔隙均匀度相对应。如型号10P,即表示任意25.4mm长度上孔隙均匀度为7-13孔的泡沫陶瓷过滤产品。铝及铝合金生产过程中常常用到178×178×50mm、230×230×50mm、305×305×50mm、381×381×50mm、432×432×50mm、508×508×50mm、584×584×50mm,共七种主要规格的泡沫陶瓷过滤板产品。需要其他规格和型号的产品,供需可双方自行协商。尺寸及外形偏差对于泡沫陶瓷过滤板的尺寸及外形偏差,我们主要考虑对泡沫陶瓷过滤板的使用影响较大的边长允许偏差 对角线长允许偏差 平面间隙 厚度允许偏差 倾斜角的允许偏差5个指标。 项 目 下列边长上过滤板的尺寸允许偏差 ≤381mm 381mm~430mm ≥430mm 边长允许偏差,mm ±3 ±4 ±5 对角线长允许偏差,mm ±5 ±7 ±9 平面间隙,mm ≤3 ≤6 厚度允许偏差,mm ±2 侧斜角的允许偏差 ±1° 注 1:对角线偏差是指过滤板大面上两条对角线的长度之差;注 2:平面间隙是将过滤板的大面置于平台上,测量过滤板与平台之间的间隙;注 3:侧斜角是指侧斜面与大面之间的夹角。注 4:表中所涉及的过滤板均为理论厚度为50mm,侧斜角为17.5°的产品。 透光率是指泡沫陶瓷过滤板产品有效过滤面积。透光率越高,说明盲孔就越少,有效过滤孔(显孔)就越多,过滤效果就越好。采用采用将待检验的泡沫陶瓷过滤板放在内置200W白炽灯泡的灯箱上,用均布5.0×5.0mm方格的正方形透明塑料板来测定过滤板大面能透光的面积,从而计算出所检验过滤板的透光率的方法来测定过滤板的透光率。本标准中将过滤板的透光率(通孔率)规定为95%以上。 孔隙率是指过滤板产品中孔穴的总体积占过滤板产品总体积的百分数。孔隙率决定了单位体积内的泡沫陶瓷过滤板过滤能力,孔隙率越大,说明过滤板过滤流量越大,过滤能力就越强,反之亦然。目前对孔隙率的测定主要有两种方法。一种是根据阿基米德定律来求取过滤板中孔穴的体积,即向带溢流管的玻璃烧杯中注水,直至水从溢流管中流出,当水不再流出后,将待测样品全部轻轻置于水中,这时水从溢流管中流出,测出此部分的水的体积,用过滤板的物理体积减去溢流出来的水的体积,就是过滤板中孔穴的总体积。另外一种方法是先分别测定出待测过滤板样品的真密度 和体积密度 ,然后根据下面的公式计算出样品的孔隙率 。这两种方法各有优缺点,方法一操作过程简单方便,检测速度快,但其致命弱点是由于过滤板材料本身具有吸水性的特点,所以导致所排出的水的体积比实际的要少,从而引起所测得的数据偏小。方法二试验过程虽然比较复杂,但试验过程中排除了由于过滤板材料吸水所产生的影响,所得出的数据比较准确。本标准中将孔隙率的指标确定为大于84%。 孔隙均匀度是用来描述过滤板产品中每25.4mm长度上实际孔穴的数量与理论要求的孔穴数量之间的差距。差距越小,说明产品质量越好,差距过大,会导致过滤板产品对杂质的截留能力降低或者对熔体的过滤速度过慢,满足不了用户的生产上的个体要求。孔隙均匀度的大小主要取决于过滤板生产所用的泡沫,泡沫的孔隙均匀度好,过滤板的孔隙均匀度就好,所以对泡沫的选择是极其重要的。 型 号 孔密度(任意25.4mm长度上的孔数) 10p 7~13 20p 17~23 30p 27~33 40p 37~43 50p 47~53 60p 57~63 本标准将孔隙均匀度确定为上表要求的数据 在过滤板的运输和使用过程中,过滤板都要承受外界一定压力的冲击,所以在标准中也引入了抗压强度这个指标来作为衡量过滤板质量好坏的依据之一。抗压强度越高,说明产品越耐用,质量就越好,反之亦然。本标准中将抗压强度这一指标确定为0.5MPa以上。 抗热震性能是指陶瓷过滤板对温度迅速变化所产生损伤的抵抗性能。在泡沫陶瓷过滤板的使用过程中,我们要求用户在使用前应将过滤板逐渐预热到过滤铝熔体的温度时才开始进行过滤,但由于有些用户在使用时不能很好的遵守这一规定,将过滤板放好后,未经预热就进行熔体的过滤,这样就要求过滤板具备一定的抗热震性能。抗热震性能越好,说明过滤板就越耐用,质量就越好。对过滤板的抗热震性能的测定,我们是在中华人民共和国行业标准《耐火制品抗热震性试验方法》(YB4018-91)和中华人民共和国黑色冶金行业标准《耐火制品抗热震性能试验方法(空气急冷法)》(YB/T376.2-1995)的基础上,根据泡沫陶瓷过滤板的特点来制定的。该试验方法的基本过程是将加热炉预热至740±10℃(铝及铝合金熔体的过滤温度一般为720±10℃)保温15min后,将待测试样在迅速移入到炉膛内,并保持30min。然后打开炉门,将试样迅速移出炉膛,让其暴露在空气中自然冷却,这一过程重复5次后,观察试样是否出现断裂、破损和缺角等外观缺陷,若试样出现这些缺陷的任一种,说明产品的抗热震性能不好,反之亦然。本标准中将经过5次热震过程不出现断裂、破损和缺角等外观缺陷的产品为抗热震性能达标的产品
碳化硅泡沫陶瓷是气孔率非常高的陶瓷,碳化硅陶瓷是气孔率很低的陶瓷!原料是一样的!SiC陶瓷不仅具有优良的常温力学性能,如高的抗弯强度、优良的抗氧化性、良好的耐腐蚀性、高的抗磨损以及低的摩擦系数,而且高温力学性能(强度、抗蠕变性等)是已知陶瓷材料中最佳的。热压烧结、无压烧结、热等静压烧结的材料,其高温强度可一直维持到1600℃,是陶瓷材料中高温强度最好的材料。抗氧化性也是所有非氧化物陶瓷中最好的。SiC陶瓷的缺点是断裂韧性较低,即脆性较大,为此近几年以SiC陶瓷为基的复相陶瓷,如纤维(或晶须)补强、异相颗粒弥散强化、以及梯度功能材料相继出现,改善了单体材料的韧性和强度。SiC陶瓷在石油、化工、微电子、汽车、航天、航空、造纸、激光、矿业及原子能等工业领域获得了广泛的应用。
2.1 凝胶注模工艺美国橡树岭国家实验室首次提出了凝胶注模工艺(Gel-casting),它是一种被广泛应用的新型成型方法。这种新的成型技术采用非孔模具,利用料浆内部或少量添加剂的化学反应使陶瓷料浆原位凝固形成坯体,获得具有良好微观均匀性和较高密度的素坯,从而显著提高材料的可*性。Gel-casting工艺可以使悬浮体泡沫化,而且能使液体泡沫原位聚合固化。作为制备多孔陶瓷的一种新型方法,悬浮体泡沫化是最经济的,原位聚合固化所形成的素坯具有内部网状结构,强度较高。2.2 自蔓延高温合成工艺自蔓延高温合成(Self-propagatingHigh-tempera-tureSynthesis,SHS)方法的概念是由前苏联科学家A.G.Mazhanov在1967年首先提出来的。SHS的本质是一种高放热无机化学反应,其基本反应过程是:向体系提供必要能量(点火),诱发体系局部产生化学反应,此后,这一化学反应过程在自身放出的高热量的支持下继续进行,最后将燃烧(反应)波蔓延到整个体系,从而制备出所需的陶瓷材料。材料的SHS技术以其高效、节能、经济和所得材料的良好性能特点而倍受重视。另外,SHS反应产物通常具有很高的孔隙率,用这一特点可用来制备具有多孔连续网络结构的陶瓷材料,通过添加造孔剂可进一步提高产物的连通开放孔隙率。此外,还有诸如泡沫前体反应法、有机泡沫堆积法、颗粒堆积工艺、水热-热静压工艺、微波加热工艺、分相滤出法、固-气共晶法、木材热解构架法等泡沫陶瓷制备方法。
直孔的通常被称为“蜂窝陶瓷”泡沫陶瓷通常是指的三维网状结构的多孔陶瓷二者成型方法不一样,蜂窝陶瓷为挤出成型,泡沫陶瓷为浸渍成型。
泡沫陶瓷一般可以分为两类,即开孔(网状)陶瓷材料以及闭孔陶瓷材料,这取决于各个孔穴是否具有固体壁面。如果形成泡沫体的固体仅仅包含于孔棱中,则称之为开孔陶瓷材料,其孔隙是相互连通的;如果存在固体壁面,则泡沫体称为闭孔陶瓷材料,其中的孔穴由连续的陶瓷基体相互分隔。但大部分泡沫陶瓷既存在开孔孔隙又存在少量闭孔孔隙。一般来说孔隙的直径小于2nm的为微孔材料;孔隙在2~50nm之间的为介孔材料;孔隙在50nm以上的为宏孔材料。
多孔陶瓷,又称为微孔陶瓷、泡沫陶瓷等,具有均匀分布的微孔,体积密度小,有着三维立体网络骨架结构且互相贯通的特点。多孔陶瓷在气体、液体过滤、净化分离、化工催化载体、高级保温材料、生物植入材料、吸声减震和传感器材料等许多方面都有广泛的应用。