首先水泥净浆搅拌机是用来制作净水泥浆,供帷幕灌浆,深层搅拌桩,高喷等基础处理用。价格一般都在2000到5000元不等,主要看城市,我们这边有个陕西波特兰电子的好像不是很贵。如何使用:(参照JC/T729-2005水泥净浆搅拌机,GB/T1346-2001水泥标准稠度用水量、凝结时间、安定性检验方法)转速慢速:自转140±5 r/min,公转62±5 r/min快速:自转285±10 r/min,公转125±10 r/min搅拌时间搅拌锅和搅拌叶片先用湿布擦过,将拌和水倒入搅拌锅内,然后在5-10s内小心将称好的500g水泥加入水中,防止水和水泥溅出;拌和时,先将搅拌锅放在搅拌机的锅座上,升至搅拌位置,启动搅拌机,低速搅拌120s,停15s,同时将叶片和锅壁上的水泥浆刮入锅中间,接着高速搅拌120s,停机。
(一)升降工序附属设备及机具
升降工序是指起下钻具、套管,投放提升取心内管、测井仪器及其他目的的作业工序。在岩心钻探中,升降工序作业频繁,且作业时间长(占总工时的20%~60%)。升降工序的时间越长,钻探总效率就越低。因此,优选升降工序所用机械和机具,实现升降工序的机械化和自动化是保证安全生产、提高钻探效率的重要措施。
1.钻杆拧卸设备
钻杆拧卸设备是与钻机配套的附属机械,用于代替人力拧卸钻杆或钻具。拧卸设备有机械式、液压式和电动式三种类型。机械式主要与老式立轴式钻机配套,目前已很少生产。目前普遍采用液压式钻杆拧卸设备。
(1)NY-1型拧管机
NY-1型液压拧管机由拧卸机构、冲击机构和液压系统组成(图2-28),用于拧卸直径42mm、50mm、60mm规格的普通锁接头钻杆。当系统液压力为6MPa时,拧管转矩为0.33kN·m;油压达8MPa时,液压缸的卸扣转矩为0.44kN·m,液压缸活塞行程130mm,拧卸钻杆的转速为75r/min。
图2-28 NY-1型液压拧管机
(2)SQ114/8型液压拧管动力钳
SQ114/8型液压拧管动力钳由主钳、前导杆、背钳、后导杆、悬吊杆、吊筒、液压马达、液压换向阀、换挡手柄等组成(图2-29),主要用于绳索取心钻杆及中小直径的地质钻探套管,主要技术参数如表2-17所列。
表2-17 SQ114/8型液压拧管动力钳主要技术参数
图2-29 SQ114/8型液压拧管动力钳
SQ114/8型液压拧管动力钳主要性能特点是:①衔接方便,可与所有地质钻机进行衔接,可单独配套动力站;②可靠夹持并卸扣,夹持钻杆镦粗部分,不打滑、不啃伤钻杆;③主背钳对中性能良好,彼此浮动,整体浮动悬挂,可侧摆移开孔口;④操作简单,换向阀实现拧卸,主背钳同步夹紧、同步松开;⑤两挡设置,可实现高挡位快速拧卸和低挡位大扭矩拧卸,可设定扭矩。
该液压拧管动力钳与液压立轴式钻机和全液压动力头钻机配套使用,已在全国绳索取心钻探中得到广泛应用。
2.孔口夹持装置
孔口夹持装置用于孔口夹持钻杆之用。根据所夹持钻杆的类型不同,分为普通夹持器和绳索取心夹持器。普通夹持器多采用垫叉式,拧卸钻杆时,垫叉直接叉入钻杆切口座在孔口或者拧管机上,使用较为便利。但绳索取心钻杆为内外平钻杆,接头壁薄,无法加切口,只能根据楔面原理采用卡瓦式、卡球式夹持器等,目前常用的有木马夹持器和液压夹持器。
(1)木马夹持器
木马夹持器,又称为脚踏式夹持器,用于夹持绳索取心钻杆。它是利用两个偏心座挤夹卡瓦,靠钻杆的重力实现自动夹紧的。孔内钻杆的质量越大,夹持器产生的夹紧力也越大。卡瓦磨损后应及时更换,以防夹持不牢跑管,木马式夹持器如图2-30所示。
图2-30 木马夹持器
(a)自重木马式;(b)轻型木马式
(2)液压夹持器
液压夹持器极大地改善了工人的劳动强度,并提高了安全生产水平。常见的液压钻杆夹持器如图2-31所示。
在深孔钻探中孔内钻杆质量大,选择孔口夹持装置时一定要注意夹持器有足够强度和夹持能力,以防因夹持力不足打滑造成跑钻事故。钻孔深度≥1000m时应选择自重式木马夹持器和液压、液压/气动夹持器。
图2-31 液压夹持器
(a)液压夹持器;(b)气动/液压夹持器
3.钻杆及套管悬吊装置
钻杆及套管提下过程都离不开悬吊装置,悬吊装置主要由游动滑车、提引器、吊卡、夹板等机具构成(图2-32至图2-35),其强度与质量直接关系到作业工人人身安全和孔内安全。
图2-32 游动滑车及游动大钩
图2-33 提引器
(a)切口式;(b)手搓式;(c)球卡式;(d)爬杆式
图2-34 绳索取心吊卡
图2-35 夹板
悬吊装置的配置与选择应注意以下几点:
1)游动滑车有单轮、双轮和多轮。钻孔浅部钻进一般选用单轮和双轮,可提高提下钻速度。钻孔孔深≥1000m后,应根据钻机卷扬系统单股绳提升能力,选用多轮游动滑车,游动滑车承载能力必须大于等于孔深钻具总重力的3倍以上。
2)提引器是连接钻杆与游动滑车的机具。主要类型有手搓式、切口式、爬杆式、球卡式等。切口式多用于带锁接头普通钻杆,手搓式用于绳索取心钻杆。深孔钻探时,为了升降钻杆安全起见,选择钻杆带蘑菇头,用爬杆式或吊卡式提引器。选择提引装置时,其提引能力必须大于等于钻具总重力的2倍以上。
3)吊卡多用于带锁接头钻杆和带大一级接箍的套管提升装置,吊卡强度较高,升降安全系数大。夹板主要用于质量在10t以下的套管升降,其安全性较差,深孔钻探不宜选用。
4.水龙头
水龙头安装在主动钻杆的上端,并用软管和水泵相连。其作用是将泥浆泵排出的冲洗液送入钻杆内孔,送往孔内,而且在主动钻杆转动时保证高压胶管不转动。另外,水龙头还承载悬吊钻杆的作用。
水龙头有多种形式,按其适用孔深不同,分为浅孔用水龙头和深孔用水龙头;按其回转部不同,可分为外转式(壳体转动式)及内转式(心管转动式);按冲洗液及介质的通道数量可分为单通道和双通道形式。
主要水龙头类型如图2-36所示。其中,小直径轻便式水龙头主要适用于小口径1000m以浅钻孔,其特点是水龙头体积小,心管通水面积小,耐水压小,抗拉强度低,适应于高速运转;高压水龙头和提引式高强度水龙头特点是:体积较大,抗拉强度高,密封性能好,耐水压高,适应于深孔使用;双通道水龙头可用于多介质正反循环钻进,相对于常规水龙头,它多一个侧入式循环介质通道,用于反循环钻进时将循环介质导入双壁钻杆内外管之间的环隙。另外,还有用于定向钻进有缆式随钻测量的通缆式水龙头。
图2-36 主要水龙头类型
(a)小直径水龙头;(b)轻便式水龙头;(c)高压水龙头;(d)高强度水龙头;(e)双通道水龙头
5.绞车
钻探现场配置的绞车主要有两种,测井与定向钻进用电缆绞车和绳索取心钻进打捞投放内管(亦可兼用孔内存储式测斜仪输送)用钢缆绞车。如图2-37所示。
图2-37 钻探现场专用绞车
(a)测井绞车;(b)绳索取心绞车
选择钻探现场绞车时应满足如下使用条件:①功率必须满足孔深及工况要求;②绞车轮毂排缆容量应大于工作孔深要求;③绞车尽量设有排绳和孔深计数仪;④要设有升降变速机构。
(二)泥浆净化及制浆设备
深孔钻探施工中必须及时、有效地清除混入钻井液中的大量岩屑等固相物质,以便再次循环使用泥浆,以提高钻进效率、延长孔内机具使用寿命,降低成本,预防事故发生。
可以通过沉淀、机械分离和化学处理三种方法来净化泥浆。常用的是机械分离法,即利用泥浆净化设备强制清除泥浆中的钻屑。泥浆净化设备主要有振动筛、水力旋流除砂器、离心分离机等,泥浆制备设备则是搅拌机(图2-38)。
图2-38 泥浆净化及制浆设备
(a)振动筛;(b)离心机;(c)振动筛与除砂器双作用处理机;(d)搅拌机
1.振动筛
振动筛借助筛面振动,促进浆液与固相颗粒分离以及不同粒级固相颗粒之间的分离,是泥浆净化系统中的第一级净化设备。从钻孔内返出的泥浆,首先通过振动筛,以清除粗粒钻屑(20目左右的固相颗粒)。
振动筛一般由以下部分组成:电动机及皮带传动装置,筛体和筛网、弹性支撑(或悬吊)装置,激振器,底座或框架,溢流槽和储浆箱等。激振器工作后带动筛面做单向或多向振动。当泥浆由溢流槽流向筛面时,浆液和浆液中的固相颗粒与振动的筛面之间产生相对移动和振击,这一运动促进了液体与固相颗粒的分离过程。浆液和小于筛孔的钻屑通过筛面流向下面的储浆箱,而大于筛孔的粗粒钻屑将沿倾斜的筛面向下滑动。如叠合采用多层不同规格的筛网(小目数筛网在上,大目数在下),则会使不同粒径的钻屑得以分离,并沿不同的筛面滑落。
国内使用的振动筛有两种基本类型:一种是单向振动筛,使用双轴对称的激振器,带动筛面沿其长轴方向作单方向振动;另一种是多向振动筛,动力机带动着偏心轴回转,筛体、筛网与偏心轴连接成一体,筛面则作多方向振动。
振动筛筛网通常用不锈钢钢丝编织而成。筛孔尺寸是影响固相清除效果的主要因素,其规格有:30目、40目、60目、80目、100目、120目、140目、160目和200目等多种。筛孔形状有正方形和长方形两种,后者不易堵塞。
2.水力旋流除砂器
水力旋流除砂器(图2-39)借助离心力来分离浆液中的固相颗粒。在泥浆净化系统中,它接在振动筛之后,从泥浆中清除20~30目以细的钻屑(一般清除70~200μm颗粒),实现泥浆的第二级净化。水力旋流除砂器是一个结构简单,无运动件的筒状设备,上部呈圆筒状,下部为一个倒圆锥体。此外,还有切向进浆管、溢流管和底流孔(或称排砂孔)。
图2-39 旋流除砂器原理
(a)旋流式除砂器;(b)双螺旋模型;(c)二维迹线表示各种流态
1—进浆管;2—溢流管;3—圆筒体;4—锥形体;5—排砂嘴;6—短路流;7—循环流;8—内旋流;9—外旋流;10—空气柱;11—轴向零速面;12—排出外旋流
由砂泵压送的具有一定压力的泥浆,经进浆管沿圆筒的切线方向进入旋流器上部,由于液流运动的惯性、圆形筒壁的导向和液体重力作用,泥浆在筒内旋转,并形成不断向下推移的螺旋状液流。液流中的固相颗粒因其质量不同受到大小不等的离心作用力,而从浆液中分离出来,甩向筒壁。并在旋转液流带动及其自重的作用下,按螺旋形轨迹沿筒壁滑落。当螺旋液流降到锥体部分时,由于过流截面不断缩小,液流圆周线速度不断加快。在高速旋流的影响下,筒内空气被集中于轴线附近,并且由于液流的卷吸作用,围绕轴线形成一个似柱状负压区。这样,当螺旋液流到大锥体下部(多数钻屑分离之后,已是比较干净的泥浆),便在轴心负压作用下改变方向,形成一个同向旋转的上升旋流并沿轴线按螺旋形上升,由溢流管排出。依靠旋流器内向下与向上两股旋流运动,实现了浆液和钻屑的有效分离和反向汇集。
旋流除砂器的规格通常以除砂器上部圆筒直径(单位:in,1in=0.0254m)表示,如:2in、3in、4in、5in、6in、7in、8in、10in、12in。一般来说,随旋流器尺寸越大,其分离的固相颗粒粒径和单位时间处理的泥浆量也越大。
除泥器的结构和工作原理和除砂器相同,其区别在于结构尺寸、清除钻屑固相颗粒的粒径和处理泥浆的能力不同。除泥器的尺寸小,通常用于分离15~40μm的固相颗粒,泥浆处理量也小。故常用多个除泥器与除砂器配套使用。
除砂器和除泥器的筒体内壁很容易被固相颗粒的高速液流所磨蚀。为了提高其耐磨性,可采用白口铸铁、内壁衬以耐磨橡胶的碳素钢或其他耐磨材料制造。
3.离心分离机
通过除砂器、除泥器后,如泥浆中的固相含量颗粒还不能满足钻探使用要求,则再将除泥器处理后的泥浆抽入离心机分离,可将泥浆中细小岩屑和砂粒分离出去,一般可以除去2μm以上有害固相,并除去钻井液中多余的胶体,控制泥浆黏度,回收重晶石。
分离机有沉淀式、筛筒式、水力涡轮式、叠片式等多种类型。
一般岩心钻探的泥浆净化设备只包括振动筛、旋流除砂器或除泥器、砂泵和泥浆槽箱即可,较少使用离心机。因为取心钻进过程中产生的钻屑粒度细小,以金刚石取心钻进为例,70%以上的岩屑粒度<0.1mm,所以通常只使用除砂器或除泥器并辅以适当的化学处理剂(如絮凝剂等)即可满足泥浆净化要求。
4.泥浆搅拌机
制备泥浆的设备主要有泥浆搅拌机及水力搅拌器两种。现场配备的卧式泥浆搅拌机容量一般为0.3~0.5m3,立式为0.5~1m3,搅拌速度一般为80~100r/min。水力搅拌器多用于固井及封孔水泥搅拌。
水泥净浆搅拌机按标准规定的水泥混合后搅拌成均匀的试验用净浆,供测定水泥标准稠度,凝结时间及制作安定性试块用。是水泥厂、建筑施工单位、有关专业院校及科研单位水泥试验室必备的,不可缺少的设备之一。济南铂鉴生产水泥净浆搅拌机、水泥胶砂搅拌机、水泥胶砂振实台。
用于粉体与粉体和粉体与液体添加剂的混合设备主要有水平式混合机和锥形混合机。
一、水平式搅拌混合机
水平式搅拌混合机主要用于粉体的混合和粉体与泥浆或液体添加剂的混合,一般分单轴和双轴两种类型。在非金属矿产加工中多用单轴搅拌混合机,而在陶瓷生产中可用双轴搅拌机把粉料和泥浆混合成水分均匀的塑性泥料,以实现生产过程的自动化和连续化。
(一)单轴搅拌机构造和工作原理
在非金属矿产加工生产中一般多用单轴式,它由卧式筒体、紧固联接于主轴的浆叶(刀片)、喷液装置及传动部分组成。图4-4为浙江省化工研究院研制的单轴犁刀式混合机示意图。粉料从加料口加入,当电动机启动后经减速器、联轴器带动主轴旋转时,刀片不断地对筒体内的物料进行搅拌,如需加添加剂,从进液管加入,通过喷液装置均匀喷洒在湍动的物料上,在搅拌过程中与粉体均匀混合。
为了提高混合效果,在混合机筒体内侧,装有电动机直接带动的飞刀组,当搅拌物料时,被抛出和作周向湍动的物料经过飞刀组,被高速旋转的飞刀迅速、有力地抛散,使物料在桨叶和飞刀的复合作用下,能在较短时间内达到均匀混合,物料混合的质量较高。
有的混合搅拌机为了适应使用固体添加剂的需要,在筒体外层装上加热装置,在物料搅拌时同时加热,当达到一定温度时添加剂融化,使之与物料很好地混合,达到均匀分布的效果。
设备的特性参数见表4-2。
图4-4 单轴犁刀式混合机示意图
1-进料口;2-主轴;3-入孔;4-减速机;5-主电机;6-喷液装置;7-出料口;8-出料手轮;9-筒体;10-飞刀及副电机;11-犁刀
表4-2 犁刀式混合机特性参数
注:表中“C”表示用碳钢材料;“P”表示用不锈钢材料。
(二)双轴搅拌机构造和工作原理
图4-5为双轴搅拌机示意图。在料槽7内有两根装有刀片3的螺旋轴6,刀片按螺旋线排列。其中一根轴由电动机与经减速器4带动回转,另一根轴则通过一对齿轮9被带动。
在料槽的上方装有带小孔的管子1,泥浆(水)通过小孔加入料槽中。粉料用给料机定量地从加料口2加入机内,与同时加入的泥浆混合,沿螺旋线排列的刀片在螺旋轴回转时不断地对料槽中的物料进行搅拌,刀片把逐渐变得均匀的塑性物料运送到出料口8卸出。
双轴搅拌混合机是一种连续式的混合设备。它的主要部件是料槽和两根螺旋轴。搅拌机的刀片是易损零件,应该用耐磨材料制造。为便于调整刀片的角度和更换刀片,在刀片的末端都有圆柱形的刀柄,安装时,将刀柄插入轴上相应的圆孔中,然后在带螺纹的刀柄尾部套上螺母并拧紧。
图4-5 双轴混合搅拌机示意图
对于两根螺旋轴均使物料沿同一方向运送的并流式搅拌机,为使物料混合均匀,可以减小刀片安装的螺旋角,从而降低物料通过搅拌机的速度,以达到延长混合时间,提高混合质量的目的。对于逆流式双轴搅拌机,两根轴上的刀片则排列成相同的螺旋旋向。这样,当一根轴回转把物料送往出料口时,另一根轴却往相反方向运送物料。因此,物料在搅拌机中混合的时间较长,可以得到较为均匀的混合。此时,应使把物料送往出料口的速度大于反向运送速度,才能使物料最终移向出料口。
(三)主要参数的确定
1.物料的轴向移动速度v
并流式双轴搅拌机物料的轴向移动速度为:
非金属矿产加工机械设备
式中 v——物料的轴向移动速度(m/s);
Z——一个螺距内的刀片数,一般取Z=4;
b——刀片的宽度(m);
n——刀片螺旋轴的转速(r/min);
k——物料的反向回流系数,与物料的粒度、粘性、水分、松散程度以及螺旋升角α有关,通常取k=0.85~0.95;
α——螺旋升角(rad)。
逆流式搅拌机物料的轴向移动速度为:
非金属矿产加工机械设备
式中 Q——搅拌机的生产能力(m3/h);
D——刀片旋转时扫过的圆周直径(m);
d——刀片螺旋轴直径(m);
φ——料槽中物料填充系数,一般取φ=0.55。
2.物料在搅拌机中混合的时间t
非金属矿产加工机械设备
式中 t——物料在搅拌机中混合时间(s);
L——搅拌机的有效长度,即加料口与击料口之间的距离(m)。
式(4-3)对并流式、逆流式搅拌机均适用。
对于每一种物料,最适宜的混合时间应由实验确定。
3.生产能力Q
并流式双轴搅拌机的生产能力Q为:
非金属矿产加工机械设备
式中 Q——搅拌机的生产能力(m3/h);
K——搅拌机刀片螺旋轴的根数,并流式双轴搅拌机,K=2。
逆流式搅拌机的生产能力Q则较小,一般按式(4-4)使K=1,分别以两根轴各不相同的v计算出生产能力,其二者之差即为逆流式搅拌机之生产能力Q。
4.功率N
刀片在工作时,物料作用于刀片上的阻力为:
s=cF
式中 s——物料作用于刀片上的阻力(N);
c——阻力系数,Pa。对于含水量为20%左右的泥料,可取为c=200~300kPa;
F——刀片在其运动方向的投影面积(m2)。
搅拌机需要的功率N为
非金属矿产加工机械设备
式中 N——搅拌机需要的功率(kW);
i——螺旋轴上刀片的总数;
η——机械效率,用圆柱齿轮减速器变速时,η=0.94;
β——功率储备系数,可取β=1.2~1.4。
其余符号的意义和单位同前。
表4-3列出了双轴搅拌机的规格和主要技术性能。
二、锥形混合机
锥形混合机主要用于粉体的混合和粉体与液体添加剂的混合。目前使用较多的主要有两种:悬臂双螺旋锥形混合机和螺带式锥形混合机。
(一)悬臂双螺旋锥形混合机
它采用双螺旋非对称悬臂结构,由传动、螺旋、筒体、筒盖、出料阀和喷液装置等组成,如图4-6所示。传动部分主要把电动机的转动通过减速装置调整到合理的速度,然后靠圆锥齿轮传递给两非对称悬臂排列的螺旋作公、自转行星运动。
表4-3 双轴搅拌机的规格和主要技术性能
图4-6 悬臂双螺旋锥形混合机结构示意图
当电动机起动后,通过减速器使两非对称螺旋快速自转将物料向上提升,形成两股非对称的沿筒壁自下向上的螺柱形物料流。转臂带动的螺旋公转运动,使螺旋外的物料不同程度进入螺柱包络线内,一部分物料被错位提升,另一部分物料被抛出螺柱,从而达到全圆周方位物料的不断更新扩散。被提到上部的两股物料再向中心凹穴汇合,形成一股向下的物料流,从而形成对流循环。由于上述运动,使物料能在较短时间内获得均匀混合,混合的质量较高。
当需加入添加剂时,在加液接头接上料液,通过喷头,能均匀喷洒在筒体中运动的物料内。物料出口通过筒体底部的出料阀控制排出。设备的特性参数如表4-4。
表4-4 悬臂双螺旋锥形混合机特性参数
(二)螺带式锥形混合机
它主要由传动、螺带、筒体、筒盖、出料阀和喷液装置等组成。如图4-7所示。传动部分主要把电动机的转动通过摆线针轮减速器传给螺带部分,使其作圆周回转运动。
图4-7 螺带式锥形混合机结构示意图
1-电动机、减速器;2-传动部件;3-筒盖;4-螺带部件;5-筒体;6-出料阀
两根螺带通过上下同一平面内的相互平行的上横杆和下连接杆与中心螺旋固定在一起,组成相对错开180°的左右两半锥形大螺旋,由于内外螺旋的旋转作用,在较大范围内翻动物料,达到快速均匀混合。
当混合机中心螺旋快速回转时,一部分物料被抛出螺柱,一部分物料向上提升由中心自下向上形成螺柱形物料流。两螺带沿筒壁快速回转,同样使物料作抛出和提升运动。被提升到上部的内外层物料再向凹陷处汇合,形成向下的物料流,补充底部的空穴,从而形成上下对流循环,由于上述运动的复合,物料在较短时间内获得了均匀混合。螺带式锥形混合机的特性参数见表4-5。
表4-5 螺带式锥形混合机特性参数
泥浆搅拌机是钻进复杂地层时配用的钻探辅助设备。主要作用是将泥浆搅匀。在地勘钻探施工中,所用的泥浆搅拌机类型主要有机械式和水力式搅拌机。
(一)机械式搅拌机
机械式泥浆搅拌机按结构(主轴与地面平行或垂直)形式不同,可分为卧式和立式两类。其中:卧式搅拌机有单轴和双轴之分。按容量不同,还有0.3m3、0.5m3、2m3、3m3、4m3等多种规格。这一类泥浆搅拌机比较笨重,搬运不方便。立式泥浆搅拌机如图2-4所示;结构简单、轻便,一般搅拌速度为80~100r/min。
(二)水力式搅拌机
其基本原理如图2-5所示。此种搅拌机可不单独配备动力,利用施工现场的泥浆泵送入液体进行反复循环,即可实现拌制泥浆。当使用黏土粉造浆时,最好采用水力式搅拌机。
图2-4 立式搅拌机示意图
1—输水管;2—工作轮;3—齿轮箱;4—轴承;5—传动轴;6—伞齿轮;7—机架;8—搅拌轴;9—搅叶;10—搅拌桶
图2-5 水力式搅拌机
1—漏斗;2—三通管;3—喷嘴;4—容器;5—钢板
钻井泥浆搅拌器在安装和使用时应注意事项:
1、泥浆搅拌器安装时应水平起吊搅拌器并平稳地放置在欲要安装的位置,调整同轴度《0.39mm后将4只M16孔座焊于罐体上,并旋紧机座固定螺栓。
2、泥浆搅拌器刚性联轴器必须加装弹簧垫并应坚固可靠,否则会引起波轮轴的偏摆,加剧减速器磨损。
3、泥浆搅拌器搅拌器运转中应无异响、卡带、温度过高等异常情况出现。否则应停机检查,排除故障。
4、泥浆搅拌器减速器油面高度应保持在视油窗中部位置,工作时就经常补足润滑油。建议使用120#工业齿轮油。当现场不能满足时,也可使用其它粒度适当的润滑油。
泥浆搅拌器正确使用方法
泥浆搅拌机与灰浆搅拌机区别泥浆搅拌机主要适用地质、煤田、 石油等勘探钻孔搅拌泥浆,若加上过滤亦可用于建筑、路桥、水库、矿山、化工等行业的基础工程搅拌水泥浆。灰浆搅拌机适于搅拌干硬性、半干硬性、塑性及各种配比的混凝土,满足不同工况的要求。
在非金属矿产加工生产中,也常用螺旋桨式搅拌机来搅拌泥浆,使泥浆中各组分混合均匀,固体颗粒不致沉淀,产生较好的悬浮状态。此外,也用于在水中松解泥料以制备均质泥浆。螺旋桨式搅拌机结构简单,使用方便,故在非金属矿产加工中得到广泛的应用。
一、构造和工作原理
螺旋桨式搅拌机的构造如图4-8所示。它主要由垂直安置的主轴3和三叶螺旋桨1以及贮浆池2组成。主轴由电动机4经减速器5带动旋转。电动机和减速器安装在架于钢筋混凝土制的贮浆池的横梁7上,螺旋桨用键和螺母固定于主轴末端。
当螺旋桨在液态泥浆中转动时,迫使泥浆产生激烈的运动,其中除了有切向和径向运动外,还有速度较大的轴向运动,这种轴向运动能促使泥浆强烈对流循环,因而泥浆可得到有效的混合和搅拌。
图4-8 螺旋桨式搅拌机
1-螺旋桨;2-贮浆池;3-立轴;4-电动机;5-减速器;6-机座;7-横梁
二、螺旋桨
螺旋桨是螺旋搅拌机的运动工作件。常用三片桨片,单层旋桨。
螺旋桨由叶片和轴套组成,其叶片沿圆周等分排列,其结构如图4-9所示。
桨叶与轴套通常是铸成整体的,桨叶的前面是工作面(又称压力面),为斜螺旋面的一部分;桨叶的后面是非工作面,其与轴线为中心的圆柱面的相交线一般是二次抛物线形状。零件图中除了必要的投影视图外,为了反映叶片复杂的剖面图,称叶片型线图。有关桨片设计可参见有关资料介绍。
螺旋桨紧固于立轴上,除用平键联接外,在轴端还用铜质盖形螺母上紧。具有右旋螺纹的盖形螺母随立轴和螺旋桨一同在料浆中旋转。为了使料浆作用于螺母上阻力矩与螺母拧紧方向相同,以防螺母自行松脱,立轴应作顺时方向(从立轴顶端朝下观察的转向)旋转,那么螺旋桨要把料浆推向下方,桨叶螺旋面的旋向应当是左旋。
图4-9 螺旋桨结构投影图
三、搅拌池
大型搅拌池多为薄地式混凝土筑制,小型的可用板材制成。对大型浆池,为减少料浆随螺旋桨整体旋转,提高桨叶与料浆间的相对运动速度而有较好的搅拌效果,一般浆池的横截面为正多边形(多用八边形),浆池的直径对横截面为正多边形的搅拌池来说,是指正多边形的内切圆直径。
搅拌池的直径要合理选择,直径过大,搅拌不容易均匀,局部地区会搅拌不到而成为死角;直径过小,则搅拌池容积太小,不能充分发挥搅拌机的作用,经济上不合理,通常搅拌池的直径可按下式选择:
非金属矿产加工机械设备
式中 D——搅拌池直径;
d——螺旋桨直径。
搅拌池的容积计算如下:
按搅拌比Vp/V0=10~13,计算池中料浆的体积V0,则搅拌池的容积
。
式中 Vp——搅拌池的容积;
K——搅拌池的有效利用系数,可取K=0.85。
由已知的搅拌池容积和直径,可计算搅拌池的深度,或者更为简单而实用的是用下面的经验公式确定搅拌池的深度。
非金属矿产加工机械设备
式中 H——搅拌池的深度;
D——搅拌池的直径。
由于螺旋桨式搅拌机搅拌时料浆的运动特性,在螺旋桨的下方,流线比较集中,而在搅拌池底部附近的四周,料浆的流速很小,往往成为搅拌不到的死角。为了避免这种情况的发生,搅拌池底部通常做成棱锥形的表面。底面直径为搅拌池直径的1/2,半锥角为45°,如图4-10所示。
确定搅拌池的深度时,还要结合搅拌轴伸长度一并考虑,不要使搅拌机主轴悬臂太长,以免扭断或由于螺旋桨受力不平衡时,造成侧向弯曲,失去稳定性,并使轴承容易损坏。
图4-10 搅拌池结构图
1-瓷砖;2-地脚螺拴预留孔;3-人孔
四、立轴
立轴的材料通常采用45号钢,为了防止铁质对料浆的污染,轴伸入料浆的那一段应当采取防腐蚀措施。
1.轴的强度计算
工作时,主轴承受扭转和弯曲的组合作用,但是,为了简化计算,工程中往往假定立轴仅仅承受扭矩的作用,然后用增加安全系数,即降低材料的许用应力来弥补由于忽略弯曲作用所造成的误差。
对于实心轴,轴的直径
非金属矿产加工机械设备
式中 ds——轴的直径(xm);
N——轴传递的功率(kW);
n——轴的转速(r/min);
A——与轴的材料和载荷性质有关的系数,一般可按表4-6查取。
表4-6 轴实用材料的许用应力[T]及A值
表4-7 选取τk=310kgf/cm2时各轴的直径、转速、功率关系表
注:在粗线以上范围的建议选用表4-9更为合适。若τk=310kgf/cm2时,需根据换算系数计算后取两表的较大值。
以45号钢为基础,取τ=310kgf/cm2(即A=10.51)时,各轴的直径、转速、功率间的关系见表4-7。
对于空心轴,轴的直径
非金属矿产加工机械设备
式中 Ds——空心轴的外径(cm);
α——轴的内径与外径之比;
其余符号的意义和单位同前。
2.轴的刚度计算
为了防止转轴产生过大的扭转变形,以免在运转中引起震动造成轴封失效,应该将轴的扭转变形限制在一个允许的范围内,这是设计中的扭转刚度条件,为此,搅拌轴要进行刚度计算。
对于实心轴,轴的直径
非金属矿产加工机械设备
式中 d——轴的直径(cm);
N——轴传递的功率(kW);
n——轴的转速(r/min);
B——与扭转变形的扭转角有关的系数。对于剪切弹性模数G0=8.1×105kgf/㎝2,钢的B值见表4-8。
表4-8 B系数(G0=8.1×105kgf/cm2时)
为了使用方便以G0=8.1×105kgf/cm2、φ=1/2°为条件,根据 公式,把各种不同的转速、传递功率、直径的关系列于表4-9。
对于空心轴,表4-7或4-9要结合4-10进行选取。
必须指出,在选取轴径时应同时满足刚度和强度计算两个条件。一般按刚度条件计算的轴径较之强度条件计算者为大,所以通常对搅拌轴来说,主要以刚度条件确定轴径。如果刚度条件计算的结果较之强度条件计算结果相差较大时,可考虑改变轴的材质,即选用强度较差的材料。但仍然要满足强度条件要求。当转速较低功率又较大时,对强度条件是不可忽视的。
确定轴的直径时,还必须考虑轴上开有键槽或孔会引起轴的局部削弱,直径因而应适当增大,按照一般经验,轴上开有一个键槽或浅孔时,直径应增大4%~5%。如果在同一横截面位置开有两个键槽或浅孔,则直径应增大7%~10%。此外,轴的直径还应增加2~4mm作为腐蚀富裕度。
表4-9 选取φ=1/2°,G0=810×105kgf/cm2时轴的直径、转速、功率关系表
注:在粗线以下范围,建议选用表4-7更为合适。若φ≠1/2°时,需根据换算系数计算后取两表的较大值。
表4-10 空心轴换算值b0
注:空心轴查表时,须将实际传动功率除以b0得N换,再查表4-7或4-9。
立轴是悬伸到搅拌池中进行搅拌操作的,支承条件较差,常常由于侧向外力的作用而造成弯曲,弯曲的结果使离心力增大,从而又进一步增加弯曲的程度,最后使轴和轴承完全破坏。为了防止这种情况发生,在设计中应尽可能增大立轴轴承之间的距离和缩短悬臂的长度,并应对螺旋桨的静平衡精度提出一定的要求。
在一般情况下,立轴轴承之间的距离B和悬臂长度L可用下面的公式验算。
L/B≠4~5 (4-11)
L/ds≤40~50 (4-12)
立轴的不直度允许差一般取为0.1/1000。
螺旋搅拌机结构简单,操作容易,搅拌作用强烈,效果较好;但磨损较快。使用时要注意不要让搅拌机空转,即搅拌池中没有料浆时不要开动搅拌机。
图4-11 搅拌轴的支承
五、主要参数的确定
1.转速n
螺旋桨的转速太低时,操作强度下降,搅拌效果不好;转速太高时,功率消耗和作用在桨叶上的力都急剧增大。桨叶不能做得过分笨重。根据实际使用的数据,螺旋桨的转速
非金属矿产加工机械设备
式中 n——螺旋桨的转速(r/min);
d——螺旋桨的直径(m)。
实际上用上式计算的螺旋桨转速往往是偏高的,且供设计和使用时参考。选定螺旋桨转速时,应根据使用要求确定,例如用于松解泥料以制备均质泥浆时,需要有比较强烈的冲刷和碰击作用,应当采用较高的转速;如用于搅拌泥浆使之保持均匀,则可使用较低的转速。
2.功率N
搅拌桨所消耗功率,主要是克服桨叶在运动过程中所遇到流体阻力,因此,所需功率不但和搅拌机的结构尺寸等有关,还和料浆性质、桨叶转速和安装位置等有关,搅拌过程是一个复杂的操作,从理论上可推得:
非金属矿产加工机械设备
式中 ρ——浆料密度(kg/m3);
n——桨叶转速(r/min);
d——桨叶直径(m);
ζ——功率系数,由实际测定得出。
对于三叶单层螺旋桨搅拌机,可用下式估算:
非金属矿产加工机械设备
式中 ρ——浆料密度(kg/m3);
n、d——同上。
上述计算功率只考虑搅拌机本身克服料浆阻力的因素,没有包括机械运转部分和传动装置等功率消耗。因此,确定电动机功率时,还必须考虑搅拌机和传动装置的机械效率,同时还应乘上功率储备系数,功率储备系数可取1.5左右。
表4-11列出了螺旋桨式搅拌机的规格和主要技术性能。
表4-11 螺桨搅拌机的规格和主要技术性能