陶瓷工艺流程图

更新时间:02-08 装修 由 栗子 分享

凡是用陶土和瓷土这两种不同性质的粘土为原料,经过配料、成型、干燥、焙烧等工艺流程制成的器物都可以叫陶瓷。以下是我收集整理的陶瓷工艺制作流程,希望对你有帮助。

陶瓷工艺制作流程图文讲解

淘泥

高岭土是烧制瓷器的最佳原料,千百年来,多少精品陶瓷都是从这些不起眼的瓷土演变而来,制瓷的第一道工序:淘泥,就是把瓷土淘成可用的瓷泥。

摞泥

淘好的瓷泥并不能立即使用,要将其分割开来,摞成柱状,以便于储存和拉坯用。

拉坯

将摞好的瓷泥放入大转盘内,通过旋转转盘,用手和拉坯工具,将瓷泥拉成瓷坯。

印坯

拉好的瓷坯只是一个雏形,还需要根据要做的形状选取不同的印模将瓷坯印成各种不同的形状。

修坯

刚印好的毛坯厚薄不均,需要通过修坯这一工序将印好的坯修刮整齐和匀称。

捺水

捺水是一道必不可少的工序,即用清水洗去坯上的尘土,为接下来的画坯、上釉等工序做好准备工作。

画坯

在坯上作画是陶瓷艺术的一大特色,画坯有好多种,有写意的、有贴好画纸勾画的,无论怎样画坯都是陶瓷工序的点睛之笔。

上釉

画好的瓷坯,粗糙而又呆涩,上好釉后则全然不同,光滑而又明亮:不同的上釉手法,又有全然不同的效果。

烧窑

千年窑火,延绵不息,经过数十道工具精雕细 的瓷坯,在窑内经受千度高温的烧炼,就像一只丑小鸭行将达化一只美天鹅。此外,烧窑前即在坯体素胎上绘画,如青花、釉里红等,则称为釉里红,其特点是彩在高温釉下,永不褪色。

求陶瓷熔块资料 那位好心人帮帮忙,万分感谢

熔块 8.1 熔块的构成、组成和分类 1)熔块的构成 熔块由玻璃网络形成剂、中间离子和变性剂三大要素构成。玻璃网络形成剂是构成熔块玻璃的基体,变性剂是能破坏玻璃网络、降低玻璃熔融温度或高温粘度的物质,因此,也可称为网络修饰离子或称熔剂;中间离子是能处于玻璃网络之内或之外而存在于玻璃中的物质,有时参与构成玻璃网络,有时也可能起类似网络修饰离子的作用。 2)熔块的配方 熔块是一些组成特殊的,经过熔化、水淬或冷轧制成的,通常用作釉料、坯体或搪瓷釉等配料成份的材料。 8-1不同类型熔块的组成范围(质量%) 化学组成 熔块类型 R2O CaO BaO ZnO PbO Al2O3 B2O3 SiO2 ZrO2 高温透明熔块 1~3 9~14 0~4 8~12 0~2 7~9 0.5~3 56~66 0~1 中温透明熔块 2~5 4~8 0~2 4~8 0~6 5~8 3~8 50~58 0~1 低温透明熔块 3~6 4~8 — 4~8 0~20 2~6 3~8 45~55 — 中温乳白熔块 2~5 4~8 — 4~8 — 5~8 6~10 50~55 8~14 低温乳白熔块 3~7 1~6 — 1~6 0~3 2~6 8~12 50~55 8~14 锌无光熔块 0~2 — — 20~30 0~35 0~2 2~8 30~55 — 钙无光熔块 6~12 16~20 — — 0~5 2~5 6~12 50~60 0~5 3)熔块的分类 根据使用目的、条件和设定产品的性质等因素,陶瓷工业用熔块的类型很多,但使用在釉面砖上熔块类型及其组成范围如表8-1所示。除上表中的典型类型熔块之外,还有一类着色熔块,熔块中含有过渡金属离子。每类熔块,除了有高低温之别外,还可能具有不同的热膨胀系数,或富含或不含某种特定组份,以适应不同烧成温度不同坯体、不同陶瓷色料的需用要。正因为这样,陶瓷熔块产品可多达数百种。 8.2 熔块的性质 熔块也是釉料的一种,它的各项性能都有,如热膨胀系数、表面张力、使用温度、始融温度、高温粘度等。使用时要测热膨胀系数,再就是始融温度和使用温度。通常陶瓷厂家会选择与坯体、底釉匹配的熔块。各种釉料膨胀系数如图所示。 8.3 熔块的制备工艺 1)熔块熔制温度与时间 经验证明,明焰熔化熔块时,熔块质量除与配方组成有关外,还与许多其它工艺因素有关。其中首要的是熔块的熔制温度和熔制时间。影响熔块形成的因素十分复杂。含熔剂量少的熔块,原料粒子比较粗的熔块,熔制温度要高,时间要长,而且熔体必须达到一定温度才能在规定时间内完成玻璃形成的动力学过程。所以,通过初步计算,由实际实验确定合理的熔制温度和时间,才能保证熔块质量和生产经济的合理性。 原料进厂(矿物原料和化工原料) 外观检验和化验 配料 混合 熔化(池炉或转炉) 水淬 包装 入库 8-1熔块生产工艺流程图 2)熔块料组分的飞扬和挥发 以喷嘴使用燃气或没的明焰熔块炉为例,其中特别是回转炉,熔块粉料飞扬损失很大,这样,一则降低熔块出产率,二则严重改变了配料组成,因密度小和细粉状物飞扬比较大。这是回转炉被淘汰的根本原因。熔块粉料掺水混合造粒,是避免或减少组分飞扬损失的有效方法。 在明焰加热熔制过程中,物料粉料和熔体长时间接触高温热气流而产生挥发,造成熔块中熔剂量减少,并污染大气。由于熔制过程复杂,挥发不可避免且不稳定,造成熔块质量的波动,而且熔制温度越高、时间越长,挥发量越大,生产越难控制。 8.4 熔块的选择 釉面砖所用的熔块是中温熔块,而且有几种,有光锆白、有光透明、哑光熔块等。但是在釉面砖生产时如何选择熔块呢? 釉面砖釉面容易出现针孔、釉面桔皮等问题。而通常情况下比较容易出针孔问题,特别是一次烧成釉面砖更容易出现这个问题。一般在进料之前可拿小样试烧(同时在电炉和大窑试烧)。烧后看其熔融状态和坯体的结合程度。合格的话球磨淋釉试烧。若釉面无明显针孔,则进料中试。透明熔块有一点小毛孔也看不明显,最容易出现针孔的是锆白熔块。而哑光熔块在选择时,主要注意白度、质感。除此之外,还要注意烧后的砖型(平整度)、抗折强度、釉面平滑度等参数

传统陶瓷的制作工艺及流程

可型成形注浆成形---→坯料----------→精制|坯装陶瓷原料|—--→--→|内.外施釉体坯---→釉料----------→烧自选釉烤彩包入-→-→胎-→-→-→-→-→-→成瓷瓷绘花选装库1坯料制配工艺A、搅拌工艺:单一陶瓷原料按配方过磅投放——搅拌池搅拌均匀——抽浆高位池——过筛(2次)——除铁(2次)——沉浆池——抽浆榨泥——粗练——陈腐(15天)——精练(2次)——送成形配用。B、球磨工艺:单一陶瓷原料按配方过磅投放——球磨机中——按比例加水——球麻定时抽浆检测细度——放浆沉浆池——过筛(2次)——除铁(2次)——沉浆池——抽浆榨泥——粗练(2次)——陈腐(15天)——精练(2次)——送成形配用。2釉料制配工艺A、釉用单一原料按配方过磅投放——球磨机中——按比例加水——球磨定时抽浆检测细度——放浆——过筛(2次)——除铁(3次)——存浆池陈腐备用。3日用陶瓷成形工艺流程A、机压成形工艺流程泥料——切泥片——压坯——带模干燥——脱模——坯体干燥——磨坯——捺水施内釉——捺外水沾外釉——取釉——扫灰检验——装匣——烧成。B、注浆成开工艺流程泥料化浆——高位浆桶——注浆——添浆——倒出余浆——带模干燥——起坯——利假口——坯体干燥——汤釉——接把嘴——补外水——沾釉——扫灰检验——装匣——烧成。

陶瓷生产工艺详细流程

陶瓷生产工艺详细流程:

坯釉原料进厂后,经过精选、淘洗,根据生产配方称量配料,入球磨细碎,达到所需细度后,除铁、过筛,然后根据成型方法的不同,机制成型用泥浆压滤脱水,真空练泥,备用;对于化浆工艺,把泥浆先压滤脱水,后通过加入解凝剂化浆,除铁、过筛后备用;对注浆成型用泥浆,进行真空处理后,成为成品浆,备用。

成型工序:分为滚压成型和注浆成型。然后干燥、修坯,备用。

烧成工序:在取得白坯后,入窑素烧,经过精修、施釉,进行釉烧,对出窑后的白瓷检选,得到合格白瓷。

彩烤工序:对合格白瓷进行贴花、镶金等步骤后,入烤花窑烧烤,开窑后进行花瓷的检选,得到合格花瓷成品。

包装工序:对花瓷按照不同的配套方法、各种要求进行包装,即形成本公司的最终产品,发货或者入库。

拓展知识

陶瓷的干燥是陶瓷的生产工艺中非常重要的工序之一,陶瓷产品的质量缺陷有很大部分是因干燥不当而引起的。陶瓷的干燥速度快、节能、优质,无污染等是新世纪对干燥技术的基本要求。

压电陶瓷的制造工艺

工艺流程图如下:配料--混合磨细--预烧--二次磨细--造粒--成型--排塑--烧结成瓷--外形加工--被电极--高压极化--老化测试。 一、配料:进行料前处理,除杂去潮,然后按配方比例称量各种原材料,注意少量的添加剂要放在大料的中间。二、混合磨细:目的是将各种原料混匀磨细,为预烧进行完全的固相反应准备条件.一般采取干磨或湿磨的方法。小批量可采取干磨,大批量可采取搅拌球磨或气流粉碎的方法,效率较高。三、预 烧:目的是在高温下,各原料进行固相反应,合成压电陶瓷.此道工序很重要。会直接影响烧结条件及最终产品的性能。四、二次细磨:目的是将预烧过的压电陶瓷粉末再细振混匀磨细,为成瓷均匀性能一致打好基础。五、造粒:目的是使粉料形成高密度的流动性好的颗粒。方法可以手工进行但效率较低,高效的方法是采用喷雾造粒。此过程要加入粘合剂。六、成型:目的是将制好粒的料压结成所要求的预制尺寸的毛坯。七、排塑:目的是将制粒时加入的粘合剂从毛坯中除掉。八、烧结成瓷:将毛坯在高温下密封烧结成瓷。此环节相当重要。九、外形加工:将烧好的制品磨加工到所需要的成品尺寸。十、被电极:在要求的陶瓷表面设置上导电电极。一般方法有银层烧渗、化学沉积和真空镀膜。十一、高压极化:使陶瓷内部电畴定向排列,从而使陶瓷具有压电性能。十二、老化测试:陶瓷性能稳定后检测各项指标,看是否达到了预期的性能要求。压电陶瓷的制造特点是在直流电场下对铁电陶瓷进行极化处理,使之具有压电效应。一般极化电场为3~5kV/mm,温度100~150°C,时间5~20min。这三者是影响极化效果的主要因素。性能较好的压电陶瓷,如锆钛酸铅系陶瓷,其机电偶合系数可高达0.313~0.694。

光刻机需要半导体陶瓷吗

碳化硅陶瓷—光刻机用精密陶瓷部件的首选材料jensoil道法自然来自专栏半导体产业和投融资本文来自中国粉体网近几年,光刻机的确是个热词,不论业内业外,都对其非常关注,“有井水处即有光刻机”说的毫不夸张。据说有位半导体领域的专家去理发时,理发小哥也会滔滔不绝的和他交流光刻机。而在材料领域,碳化硅的“火”有过之而无不及,其本身作为一种优良的陶瓷材料,性能与应用不断地被的开发,尤其是随着集成电路的快速发展,碳化硅作为第三代半导体材料更是一跃成为最受瞩目的材料之一。光刻机和碳化硅之间又有什么神秘关系呢?这还要从刚才讲到的集成电路说起。集成电路产业(即IC产业)是关乎国家经济、政治和国防安全的战略产业,在IC产业中,集成电路制造装备具有极其重要的战略地位。集成电路关键装备的发展除先进设计、精密控制技术外,关键零部件制备技术制约也是严重影响集成电路先进制造装备国产化进程的一大问题。12英寸硅片用碳化硅真空吸盘关键零部件具有举足轻重的作用,要求结构件材料具有高纯度、高致密度、高强度、高弹性模量、高导热系数及低热膨胀系数等特点,且结构件要具有极高的尺寸精度和结构复杂性。例如在高端光刻机中,为实现高制程精度,需要广泛采用具有良好的功能复合性、结构稳定性、热稳定性、尺寸精度的陶瓷零部件,如E-chuck、Vacumm-chuck、Block、磁钢骨架水冷板、反射镜、导轨等。碳化硅陶瓷正是光刻机用精密陶瓷部件的首选材料!碳化硅陶瓷具有高的弹性模量和比刚度,不易变形,并且具有较高的导热系数和低的热膨胀系数,热稳定性高,因此碳化硅陶瓷是一种优良的结构材料,目前已经广泛应用于航空、航天、石油化工、机械制造、核工业、微电子工业等领域。但是,由于碳化硅是Si-C键很强的共价键化合物,具有极高的硬度和显著的脆性,精密加工难度大;此外,碳化硅熔点高,难以实现致密、近净尺寸烧结。因此,大尺寸、复杂异形中空结构的精密碳化硅结构件的制备难度较高,限制了碳化硅陶瓷在诸如集成电路这类的高端装备制造领域中的广泛应用。目前只有日本、美国等少数几个发达国家的少数企业(如日本的Kyocera、美国的CoorsTek等)成功地将碳化硅陶瓷材料应用于集成电路制造关键装备中,如光刻机用碳化硅工件台、导轨、反射镜、陶瓷吸盘、手臂等。碳化硅工件台光刻机中工件台主要负责完成曝光运动,要求实现高速、大行程、六自由度的纳米级超精密运动,如对于100nm分辨率、套刻精度为33nm和线宽为10nm的光刻机,其工件台定位精度要求达到10nm,掩模硅片同时步进和扫描速度分别达到150nm/s和120nm/s,掩模扫描速度接近500nm/s,并且要求工件台具有非常高的运动精度和平稳性。故需满足以下要求:工件台及微动台(局部剖面)示意图(1)高度轻量化:为降低运动惯量,减轻电机负载,提高运动效率、定位精度和稳定性,结构件普遍采用轻量化结构设计,其轻量化率为60%~80%,最高可达到90%;(2)高形位精度:为实现高精度运动和定位,要求结构件具有极高的形位精度,平面度、平行度、垂直度要求小于1μm,形位精度要求小于5μm;(3)高尺寸稳定性:为实现高精度运动和定位,要求结构件具有极高的尺寸稳定性,不易产生应变,且导热系数高、热膨胀系数低,不易产生大的尺寸变形;(4)清洁无污染:要求结构件具有极低的摩擦系数,运动过程中动能损失小,且无磨削颗粒的污染。碳化硅陶瓷方镜光刻机等集成电路关键装备中的关键部件具有形状复杂、外形尺寸复杂以及中空轻量化结构等特点,制备此类碳化硅陶瓷零部件难度较大。目前国际主流集成电路装备制造商,如荷兰ASML,日本NIKON、CANON等公司大量采用微晶玻璃、堇青石等材料制备光刻机核心部件——方镜,而采用碳化硅陶瓷制备其他简单形状的高性能结构部件。中国建筑材料科学研究总院的专家们却采用专有制备技术,实现了大尺寸、复杂形状、高度轻量化、全封闭光刻机用碳化硅陶瓷方镜及其他结构功能光学零部件的制备。碳化硅光罩薄膜日前在韩国的一场半导体交流活动中,ASML韩国营销经理MyoungKuyLee透露,公司将开始供应透光率超90%的薄膜,以提升EUV光刻机的效率。ASML2016年首次开发出光罩薄膜,当时的透光率是78%。随后在2018年,薄膜透光率提升到80%,去年提升到85%。薄膜用于保护光罩免受污染,单价2.6万美元左右(约合人民币16.78万元)。另外,韩国企业FST、S&STech也都在紧张开发EUV光刻机所需的薄膜,FST此前预期上半年开始供应90%透光率的碳化硅薄膜。碳化硅陶瓷精密结构部件制备工艺中国建材总院在近净尺寸成型工艺——凝胶注模成型的基础上,开发出用于制备新型大尺寸、复杂形状、高精度碳化硅陶瓷部件的工艺技术。碳化硅陶瓷部件制备工艺流程图该制备流程中的关键工艺包括凝胶注模成型工艺、陶瓷素坯加工工艺和陶瓷素坯连接工艺。其中,凝胶注成型工艺是制备碳化硅陶瓷部件的基础,该工艺是一种精细的胶态成型工艺(Colloidalprocessing),可实现大尺寸、复杂结构坯体的高强度、高均匀性、近净尺寸成型,自上世纪90年代以来在特种陶瓷材料制备领域获得了广泛的研究。陶瓷素坯加工工艺可以实现复杂形状陶瓷部件的快速、低成本、精密制造,有效提高陶瓷部件的尺寸精度及表面光洁度。陶瓷素坯连接工艺则可以实现中空陶瓷部件的制备,主要采用陶瓷粘结剂将陶瓷单体部件进行连接获得整体中空部件。产业竞争格局目前国外在集成电路核心装备用精密陶瓷结构件的研发和应用方面走在前列的公司有日本京瓷、美国CoorsTek、德国BERLINERGLAS等,其中,京瓷和CoorsTek公司占据了集成电路核心装备用高端精密陶瓷结构件市场份额的70%。京瓷及CoorsTek制造的高端陶瓷零部件具有材料体系齐全、性能优异、结构复杂、加工精度高等特点,所制造的精密陶瓷结构件几乎涵盖了现有结构陶瓷材料体系,如氧化铝、碳化硅、氮化硅、氮化铝等;结构件的应用领域也几乎覆盖了全部集成电路核心装备,形成了一系列型号齐全、品种多样的精密陶瓷结构件产品,如美国CoorsTek公司能够提供光刻机专用组件、等离子刻蚀设备专用组件、PVD/CVD专用组件、离子注入设备专用组件、晶片吸附固定传输专用组件等一系列产品;京瓷能够提供光刻机、晶圆制造设备、刻蚀机、沉积设备(CVD、溅射)、LCD等装备用精密陶瓷结构件。我国在集成电路核心装备用精密陶瓷结构件的研发和应用方面起步较晚,在大尺寸、高精度、中空、闭孔、轻量化结构的结构陶瓷零部件的制备领域有诸多关键技术问题有待突破。结束语碳化硅陶瓷具有优良的常温力学性能(如高强度、高硬度、高弹性模量等)、优异的高温稳定性(如高导热系数、低热膨胀系数等)以及良好的比刚度和光学加工性能,特别适合用于制备光刻机等集成电路装备用精密陶瓷结构件,如用于光刻机中的精密运动工件台、骨架、吸盘、水冷板以及精密测量反射镜、光栅等陶瓷结构件等。

氮化硅陶瓷粉体一般密炼多久

低温烧结高导热氮化硅陶瓷粉体、陶瓷制备方法及应用与流程文档序号:26193708发布日期:2021-08-06 18:47阅读:88来源:国知局导航: X技术》 最新专利》无机化学及其化合物制造及其合成,应用技术本发明涉及先进结构陶瓷技术领域,具体涉及一种低温烧结高导热氮化硅陶瓷粉体、陶瓷制备方法及其应用。背景技术:氮化硅(si3n4)是一种性能优异的高温高强度结构陶瓷,具有良好的室温及高温机械性能,强度高、耐磨损、抗热震、抗化学腐蚀,能够广泛应用于航空、机械、化工等领域。特别是其β相的氮化硅具有超过170w/m.k的热导率,特别适合作为高端igbt散热基板使用。但氮化硅(si3n4)的化合价是以强共价键为主,烧结驱动力小,传统固相烧结难以将其烧结致密。针对氮化硅(si3n4)陶瓷烧结,研究人员开发了采用添加烧结助剂,然后采用常压烧结方法、气压烧结方法和反应烧结等烧结方法实现烧结。传统的烧结助剂为氧化钇、氧化镁、氧化铝等氧化物材料,该类烧结助剂本身的熔点高于1700℃,导致其形成液相温度很高,烧结动力不足;另外氧化钇等氧化物材料在烧结温度下,不具挥发也不会生成氮化物相,烧结后作为杂质第二相残余在晶界处,阻碍了声子振动,从而降低了热导率,不利于提升散热基板的导热性能。技术实现要素:有鉴于此,本发明针对现有技术存在之缺失,其目的之一是提供一种低温烧结高导热氮化硅陶瓷粉体,该陶瓷原料粉体包括氮化硅和镁硅合金组合物,其中氮化硅的质量百分比为85%《氮化硅《100%,镁硅合金组合物的质量百分比为0%《镁硅合金组合物《15%,通过镁硅合金组合物的镁在烧结过程中去除氮化硅陶瓷粉体表面的氧化层,提升陶瓷烧结活性。优选的,镁硅合金组合物氧含量低于2.5%。优选的,镁硅合金组合物中金属硅质量百分比为31.5%~36.5%。优选的,氮化硅陶瓷粉体中的氮化硅的d50为0.3μm~1.0μm,镁硅合金组合物的d50为1.0μm~5μm。本发明的目的之二,还提供了一种低温烧结高导热氮化硅陶瓷,该低温烧结高导热氮化硅陶瓷使用上述的低温烧结高导热氮化硅陶瓷粉体制备得到。本发明的目的之三,是提供了该低温烧结高导热氮化硅陶瓷的制备方法,包括以下步骤:a)将质量百分比为85%《氮化硅《100%的氮化硅陶瓷粉体与质量百分比为0%《镁硅合金组合物《15%的镁硅合金组合物粉体均匀混合;b)将步骤a)混合粉体成型得到毛坯;c)将步骤b)得到的毛坯在氮气气氛下烧结。优选的:步骤c)中的炉内压力为0.5mpa~10mpa,烧结温度为1380℃~1520℃,保温时间1h~4h。优选的,镁硅合金组合物氧含量低于2.5%,镁硅合金组合物中金属硅质量百分比为34.3%≤镁硅合金组合物≤35.4%。优选的,步骤b)中成型工艺为注塑成型,其中注塑成型的高分子混合粘结剂为以聚甲醛为主的混合粘结剂,包括聚甲醛、聚丙烯和高密度聚乙烯。本发明的目的之四,是提供了一种高导热陶瓷基板、陶瓷外观结构件、陶瓷结构件产品,该产品使用上述发明的低温烧结高导热氮化硅陶瓷材料制备,并且可以采用上述的低温烧结高导热氮化硅陶瓷的制备方法得到。本发明的有益效果:本发明提供一种低温烧结高导热氮化硅陶瓷粉体、陶瓷制备方法及其应用,该陶瓷粉体包括氮化硅和镁硅合金组合物,其中氮化硅的质量百分比为85%《氮化硅《100%,镁硅合金组合物的质量百分比为0%《镁硅合金组合物《15%。1)、采用镁硅合金组合物取代传统的氧化镁等氧化物烧结助剂,利用了镁硅合金低熔点特性,从而在较低的烧结温度下实现了液相烧结。2)、通过镁硅合金组合物的镁的高活性,在烧结过程中单质镁通过氧化还原反应与氮化硅表面的氧化硅氧化层反应,夺去氧原子,从而露出新鲜的氮化硅表面参与烧结,提升陶瓷烧结活性。3)、由于镁属于高活性金属,特别是镁粉极容易氧化生成氧化镁,因此通过限制镁硅合金中的金属硅质量百分比为31.5%~36.5%,防止了在制备合金粉体制备、混料过程中生成氧化物,从而降低活性,且通过限制合金粉体粒径及表面氧含量,进一步提升效果。且通过金属硅在氮气气氛下可以生成氮化硅陶瓷本体的特性,在此范围内限制金属硅元素,从而割裂金属镁聚集,保证金属镁去除氧化硅过程中不会大面积的晶界处聚集生成氧化镁杂质相。4)、通过在氮气气氛下烧结,多余的镁硅烧结助剂会与氮气反应形成氮化硅、镁硅氮等物质非氧化物质,从而降低晶界处的氧化物杂质含量,从而提升氮化硅陶瓷的导热性能。附图说明图1为该低温烧结高导热氮化硅陶瓷的制备方法工艺流程图。具体实施方式下面对本发明作进一步详细描述,其中所用到原料和设备均为市售,没有特别要求。可以理解的是,此处所描述的具体实施例仅用于解释相关发明,而非对该发明的限定。本发明提供一种低温烧结高导热氮化硅陶瓷粉体及其陶瓷、制备方法及其应用,该陶瓷原料粉体包括氮化硅和镁硅合金组合物,其中氮化硅的质量百分比为85%《氮化硅《100%,镁硅合金组合物的质量百分比为0%《镁硅合金组合物《15%,镁硅合金组合物在此比例,既能保证形成足够的液相促进烧结,也能保证不至于过多的镁硅合金组合物导致晶界处杂质过多,造成陶瓷性能彻底变差。在本发明中氮化硅为市售的氮化硅粉体,一般来说粉体越小越好,粉体粒径大于1.0um会导致因为粉体粒径过大,导致烧结活性不足,而过小又会导致氮化硅粉体表面氧化硅过多,烧结后氧杂质过多,且粉体过细,特别是纳米粉体也难以烧结致密。在本实施例中,氮化硅陶瓷粉体中的氮化硅的d50为0.3μm~1.0μm。在本实例中优选的氮化硅粉体的α相的比例在95%~99%之间,α相的比例<95%,导致氮化硅粉体β相过高,烧结活性降低,难以烧结致密,力学、导热等性能均变差,而α相的比例>99%,作为异质晶核β相不足,导致β相晶粒尺寸难以长大,从而最终陶瓷导热性能不佳。在本发明中镁硅合金组合物通过现有的合金研磨法、气流粉碎法或者惰性气体离心喷雾法等现有技术制备,并无特别限制。但是在本实例中上述制备方法需要准确的称量,保证镁硅合金组合物中金属硅质量百分比为31.5%~36.5%,更进一步的为34.3%≤镁硅合金组合物≤36.5%,从而通过硅调整合金活性,保证合金不会在后续的混料、成型阶段过早的氧化,造成不能低温形成液相导致烧结活性不足且晶界氧化物杂质过多,影响导热性能。且通过金属硅在氮气气氛下可以生成氮化硅陶瓷本体的特性,在此范围内限制金属硅元素,从而割裂金属镁聚集,保证金属镁去除氧化硅过程中不会大面积的晶界处聚集生成氧化镁。另外在本实例中,镁硅合金组合物的d50为1.0μm~5μm,d50<1μm会导致镁硅合金组合物粉体活性过高,粉体提前氧化,从而达不到作为低温烧结助剂的效果,而d50>5μm会导致金属镁硅烧结助剂的聚集,在晶界处形成大晶粒的氧化镁杂质相,从而降低导热率等性能。而在本实例中镁硅合金组合物氧含量低于0.1%,从而进一步减少氧的参与,不仅提升烧结活性,而且提升烧结后的陶瓷导热等性能。因此在本实例中优选的镁硅合金组合物粉体的制备方法为惰性气体离心喷雾法,然后按照d50需求再次在水或者水与其它溶剂混合的液体球磨达到所需粒径尺寸。本发明提供的低温烧结高导热氮化硅陶瓷,是由上述的低温烧结高导热氮化硅陶瓷粉体制备得到。本发明还提供了该低温烧结高导热氮化硅陶瓷的制备方法,包括以下步骤:a)将质量百分比为85%《氮化硅《100%的氮化硅陶瓷粉体与质量百分比为0%《镁硅合金组合物《15%的镁硅合金组合物混合;现有技术中的干法混合、湿法混合均能实现本发明,在本实施例中为了提升粉体的混合均匀性及混合过程的产生热量而镁硅合金组合物粉体氧化,优选的使用湿法球磨混合,球磨时间2h~24h。在本制备方法中镁硅合金组合物通过现有的合金研磨法、气流粉碎法或者惰性气体离心喷雾法等现有技术制备,并无特别限制。但是在本实例中上述制备方法需要准确的称量,保证镁硅合金组合物中金属硅质量百分比31.5%~36.5%,更进一步的为34.3%≤镁硅合金组合物≤36.5%,优化调整硅合金活性,保证合金不会在后续的混料、成型阶段过早的氧化,造成不能低温形成液相导致烧结活性不足且晶界氧化物杂质过多,影响导热性能。且通过金属硅在氮气气氛下可以生成氮化硅陶瓷本体的特性,在此范围内限制金属硅元素,从而割裂金属镁聚集,保证金属镁去除氧化硅过程中不会大面积的晶界处聚集生成氧化镁。另外在本实例中,镁硅合金组合物的d50为1.0μm~5μm,d50<1μm会导致镁硅合金组合物粉体活性过高,粉体提前氧化,从而达不到作为低温烧结助剂的效果,而d50>5μm会导致金属镁硅烧结助剂的聚集,在晶界处形成大晶粒的氧化镁杂质相,从而降低导热率等性能。而在本实例中镁硅合金组合物氧含量低于0.1%,从而进一步减少氧的参与,不仅提升烧结活性,而且提升烧结后的陶瓷导热等性能。因此在本实例中优选的镁硅合金组合物粉体的制备方法为惰性气体离心喷雾,离心喷雾后根据粒径需求,再次在水或者水与其它溶剂混合的液体球磨达到所需粒径尺寸。b)将步骤a)混合粉体成型得到毛坯;现有技术中的模压法、注塑法、流延法、注浆法和凝胶注模成型等方法均可以用于该陶瓷的成型,可以根据所需成型的形状复杂程度和成本等因素综合考虑,并无特别限制。在本实例中步骤b)中为了量产效率以及成型结构方面的因素,优选的成型工艺为先与有机物粘结剂制备得到喂料,然后注塑成型,其中注塑成型的高分子混合粘结剂为以聚甲醛为主的混合粘结剂,包括聚甲醛、聚丙烯和高密度聚乙烯。其中聚甲醛为粘结剂,聚丙烯和高密度聚乙烯为骨架剂。密炼使用密炼机密炼,密炼温度为170℃~190℃,密炼时间为1h~4h。得到的喂料注塑成型并脱脂得到毛坯;根据选用的高分子混合粘结剂不同,选用不同的脱脂工艺,石蜡基混合粘结剂和聚乙烯基混合粘结剂使用热脱脂工艺,缓慢将有机物高分子分解为有机小分子化合物从注塑件中挥发完成脱脂。而聚甲醛基混合粘结剂选用硝酸催化将聚甲醛分解为甲醛小分子化合物从而完成脱脂。在本实施中优选的注塑温度为175℃~195℃,脱脂为催化脱脂,催化脱脂温度为110℃~135℃,硝酸蒸汽速率为0.16ml/min~0.25ml/min。c)将步骤b)得到的毛坯在氮气气氛下或者含氮气氛烧结。在烧结过程中,利用镁硅合金低熔点特性,在较低的烧结温度下融化成液相,通过液相溶解传质作用,从而在较低的烧结温度下实现烧结。另外在烧结过程单质镁通过氧化还原反应与氮化硅表面的氧化硅氧化层反应,夺去氧原子,从而露出新鲜的氮化硅表面参与烧结,提升陶瓷烧结活性。另外为了证足够的氮气渗透压力促进烧结,且防止镁硅合金过早氧化失去低温烧结意义,炉内氮气压力不能低,但氮气压力过高不仅增加成本而且导致安全隐患,在本实施例中炉内氮气气氛压力为0.5mpa~10mpa,烧结温度为1380℃~1520℃,保温时间1h~4h。以下是本发明的实施例:对比例1称取中值粒径d50约为0.3um的α含量95的氮化硅2500g待用。称取240g聚甲醛,35g聚丙烯和25g高密度聚乙烯加入密炼机中升温至170℃使其融化后将2000g分多次加入密炼机中,然后闭合密炼机抽真空至-0.07mpa在170℃密炼4h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为185℃,注塑压力为110mpa在135mm×95mm手机模具模腔注塑保压3s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至110℃以硝酸蒸汽速率为0.16ml/min通入硝酸氮气混合气氛保温9h后降温完成脱脂。将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力10mpa,以2℃/min升温速率从室温升至1520℃,保温时间2h,得到氮化硅陶瓷手机外壳。排水法测试该氮化硅陶瓷相对密度52.3%,使用xrd测试氮化硅α相为95%,β相为5%,三点弯曲法测试抗弯强度为56mpa,热导率为3.3w/m.k。对比例2称取中值粒径d50约为0.3um的α含量95的氮化硅2488g和12.5g的d50为1um的氧化镁,然后将氮化硅粉体和氧化镁粉体加入搅拌球磨机中,加入800g去离子水后球磨搅拌6h出料在110℃~130℃烘干24h得到混合粉体待用。称取240g聚甲醛,35g聚丙烯和25g高密度聚乙烯加入密炼机中升温至170℃使其融化后将2000g分多次加入密炼机中,然后闭合密炼机抽真空至-0.07mpa在170℃密炼4h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为185℃,注塑压力为110mpa,在135mm×95mm手机模具模腔注塑保压3s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至110℃以硝酸蒸汽速率为0.16ml/min通入硝酸氮气混合气氛保温9h后降温完成脱脂。将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力10mpa,以2℃/min升温速率从室温升至1520℃,保温时间2h,得到氮化硅陶瓷手机外壳。排水法测试该氮化硅陶瓷相对密度53.1%,使用xrd测试氮化硅α相为95%,β相为5%,三点弯曲法测试抗弯强度为51mpa,热导率为4.1w/m.k。实施例1称取342.5g纯度大于99.5%镁条和纯度99.9%的硅粉157.5g,放入坩埚中,然后在ar气氛保护下加热至1100℃融化,并ar气氛保护下离心喷雾造粒得到硅含量为31.5%的镁硅组合粉体,称取其中100g,加入球磨罐中,水与乙醇按1:1的比例加入50g,然后加入锆球球磨12~14h,然后在氮气气氛下110℃~130℃烘干,并通过激光粒度测试仪测试d50为4.89um,采用氧分析仪测试粉体表面氧含量为0.62%。称取中值粒径d50约为0.3um的α含量95的氮化硅2488g和12.5g的d50为4.89um的镁硅组合粉体,然后将氮化硅粉体和镁硅组合粉体加入搅拌球磨机中,加入600g去离子水和200g酒精后球磨搅拌6h出料在110℃~130℃烘干24h得到混合粉体待用。称取240g聚甲醛,35g聚丙烯和25g高密度聚乙烯加入密炼机中升温至170℃使其融化后将2000g分多次加入密炼机中,然后闭合密炼机抽真空至-0.07mpa在170℃密炼4h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为185℃,注塑压力为110mpa,在注塑135mm×95mm模具模腔注塑保压3s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至110℃以硝酸蒸汽速率为0.16ml/min通入硝酸氮气混合气氛保温9h后降温完成脱脂。将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力10mpa,以2℃/min升温速率从室温升至1520℃,保温时间2h,得到氮化硅陶瓷。排水法测试该氮化硅陶瓷相对密度96.6%,使用xrd测试氮化硅α相为48.1%,β相为52.9%,三点弯曲法测试抗弯强度为722mpa,热导率为52.8w/m.k。对比例3将实施例1经过脱脂的样品放入烧结炉内,空气气氛烧结,具体烧结工艺为:以2℃/min升温速率从室温升至1520℃,保温时间2h,得到氮化硅陶瓷。排水法测试该氮化硅陶瓷相对密度53.0%,使用xrd测试氮化硅α相为95%,β相为5%,三点弯曲法测试抗弯强度为52mpa,热导率为4.1w/m.k。由此可见,在空气下烧结,镁硅组合粉体提前氧化,不能实现低温烧结的目的。实施例2称取实施例1中制备的镁硅组合粉体300g,加入球磨罐中,水与乙醇按1:1的比例加入150g,然后加入锆球球磨20~22h,然后在氮气气氛下110℃~130℃烘干,并通过激光粒度测试仪测试d50为2.81um,采用氧分析仪测试粉体表面氧含量为1.45%。称取中值粒径d50约为1um的α含量99的氮化硅1280g和220g的d50为2.81um的镁硅组合粉体,然后将氮化硅粉体和镁硅组合粉体加入搅拌球磨机中,加入550g去离子水和200g酒精后球磨搅拌6h出料在110℃~130℃烘干24h得到混合粉体待用。称取100g聚甲醛,10g聚丙烯和10g高密度聚乙烯加入密炼机中升温至170℃使其融化后将1200g分多次加入密炼机中,然后闭合密炼机抽真空至-0.09mpa在170℃密炼3h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为175℃,注塑压力为130mpa,在1.5寸手表模具模腔注塑保压2s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至135℃以硝酸蒸汽速率为0.25ml/min通入硝酸氮气混合气氛保温3h后降温完成脱脂。将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力0.5mpa,以2℃/min升温速率从室温升至1380℃,保温时间1h,得到该氮化硅陶瓷手表外壳。排水法测试该氮化硅陶瓷相对密度95.2%,使用xrd测试氮化硅α相为17.2%,β相为82.8%,三点弯曲法测试抗弯强度为695mpa,热导率为123.2w/m.k。实施例3称取190.5g纯度大于99.5%镁条和纯度99.9%的硅粉109.5g,放入坩埚中,然后在ar气氛保护下加热至1100℃融化,并ar气氛保护下离心喷雾造粒得到硅含量为36.5%的镁硅组合粉体,称取其中100g,加入球磨罐中,水与乙醇按1:1的比例加入50g,然后加入锆球球磨52~56h,然后在氮气气氛下110℃~130℃烘干,并通过激光粒度测试仪测试d50为1.02um,采用氧分析仪测试粉体表面氧含量为2.19%。称取中值粒径d50约为0.5um的α含量98的氮化硅1425g和75g的上述镁硅组合粉体,然后将氮化硅粉体和镁硅组合粉体加入搅拌球磨机中,加入525g去离子水和215g酒精后球磨搅拌6h出料在110℃~130℃烘干24h得到混合粉体待用。称取100g聚甲醛,5g聚丙烯和15g高密度聚乙烯加入密炼机中升温至170℃使其融化后将1200g分多次加入密炼机中,然后闭合密炼机抽真空至-0.09mpa在190℃密炼2h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为195℃,注塑压力为105mpa,在注塑135mm×95mm模具模腔注塑保压1s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至135℃以硝酸蒸汽速率为0.25ml/min通入硝酸氮气混合气氛保温3h后降温完成脱脂。将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力3mpa,以1.5℃/min升温速率从室温升至1480℃,保温时间2h,得到该氮化硅陶瓷手机外壳。排水法测试该氮化硅陶瓷相对密度98.8%,使用xrd测试氮化硅α相为5.5%,β相为94.5%,三点弯曲法测试抗弯强度为825mpa,热导率为151.1w/m.k。实施例4称取197.1g纯度大于99.5%镁条和纯度99.9%的硅粉102.9g,放入坩埚中,然后在ar气氛保护下加热至1100℃融化,并ar气氛保护下离心喷雾造粒得到硅含量为34.3%的镁硅组合粉体,称取其中200g,加入球磨罐中,水与乙醇按1:1的比例加入100g,然后加入锆球球磨30~32h,然后在氮气气氛下110℃~130℃烘干,并通过激光粒度测试仪测试d50为2.22um,采用氧分析仪测试粉体表面氧含量为1.81%。称取中值粒径d50约为0.5um的α含量98的氮化硅1365g和135g的上述镁硅组合粉体,然后将氮化硅粉体和镁硅组合粉体加入搅拌球磨机中,加入525g去离子水和215g酒精后球磨搅拌6h出料在110℃~130℃烘干24h得到混合粉体待用。称取100g聚甲醛,5g聚丙烯和15g高密度聚乙烯加入密炼机中升温至170℃使其融化后将1200g分多次加入密炼机中,然后闭合密炼机抽真空至-0.09mpa在175℃密炼3h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为185℃,注塑压力为125mpa,在155mm×105mm手机模具模腔注塑保压0.5s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至135℃以硝酸蒸汽速率为0.25ml/min通入硝酸氮气混合气氛保温3h后降温完成脱脂。将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力5mpa,以1.5℃/min升温速率从室温升至1420℃,保温时间4h,得到该氮化硅陶瓷手机外壳。排水法测试该氮化硅陶瓷相对密度99.1%,使用xrd测试氮化硅α相为3.1%,β相为96.9%,三点弯曲法测试抗弯强度为879mpa,热导率为159.1w/m.k。实施例5称取193.8g纯度大于99.5%镁条和纯度99.9%的硅粉106.2g,放入坩埚中,然后在ar气氛保护下加热至1100℃融化,并ar气氛保护下离心喷雾造粒得到硅含量为35.4%的镁硅组合粉体,称取其中200g,加入球磨罐中,水与乙醇按1:1的比例加入100g,然后加入锆球球磨30~32h,然后在氮气气氛下110℃~130℃烘干,并通过激光粒度测试仪测试d50为2.39um,采用氧分析仪测试粉体表面氧含量为1.87%。称取中值粒径d50约为0.5um的α含量98的氮化硅1395g和105g的上述镁硅组合粉体,然后将氮化硅粉体和镁硅组合粉体加入搅拌球磨机中,加入525g去离子水和215g酒精后球磨搅拌6h出料在110℃~130℃烘干24h得到混合粉体待用。称取100g聚甲醛,5g聚丙烯和15g高密度聚乙烯加入密炼机中升温至170℃使其融化后将1200g分多次加入密炼机中,然后闭合密炼机抽真空至-0.09mpa在175℃密炼3h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为185℃,注塑压力为125mpa,在135mm×95mm模具模腔注塑保压0.5s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至135℃以硝酸蒸汽速率为0.25ml/min通入硝酸氮气混合气氛保温3h后降温完成脱脂。将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力5mpa,以1.5℃/min升温速率从室温升至1400℃,保温时间2h,得到该氮化硅陶瓷手机外壳。排水法测试该氮化硅陶瓷相对密度99.6%,使用xrd测试氮化硅α相为1.2%,β相为98.8%,三点弯曲法测试抗弯强度为923mpa,热导率为165.5w/m.k。由此对比实施例1~3与实施例1比较可知,不添加烧结助剂、添加氧化镁烧结助剂以及在空气气氛烧结,在低于1520℃范围下均未实现氮化硅陶瓷烧结致密。实施例1中添加本发明的镁硅组合粉体0.5%,使得陶瓷致密度提升到96.6%,相应热导率也提升到52.8w/m.k。实施例1~5比较可知,添加镁硅组合粉体能够显著降低烧结问题并提升陶瓷导热性能,例如实施例2结果表明,添加14.7%的d50为2.81um硅组合粉体,即使在1380℃低温下,也能达到95.2%的致密度,由于大量液相传热作用,β相提升到82.8%,相应的热导率达到了123.2w/m.k。实施例4~5表明,镁硅组合粉体中硅含量在34.3%~35.4%,添加量在7%~9%之间时,能够得到的更为优异的力学合热学性能。以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。完整全部详细技术资料下载当前第1页1 2 该技术已申请专利。仅供学习研究,如用于商业用途,请联系技术所有人。技术研发人员:周涛;雒文博;温兵;赵立宏技术所有人:深圳市精而美精密陶瓷科技有限公司;周涛我是此专利的发明人上一篇:基于自然语音处理的正则意图识别方法与流程上一篇:敏感数据检测和替换的制作方法

古代制陶工艺流程图是怎样的

1.淘泥:制瓷的第一道工序---淘泥,就是把瓷土淘成可用的瓷泥。2.摞泥:淘好的瓷泥并不能立即使用,要将其分割开,摞成柱状,以便于储存和拉坯用。3.拉坯:将摞好的瓷泥放入大转盘内,通过旋转转盘,用手及拉坯工具,将瓷泥拉成瓷坯。4.印坯:拉好的瓷坯只是一个雏形,还需要根据要做的形状选取不同的印模将瓷坯印成各种不同的形状。5.修坯:刚印好的毛坯厚薄不均,需要通过修坯这一工序将印好的坯修刮整齐和匀称。6.捺水:捺水是一道必不可少的工序,即用清水洗去坯上的尘土,为接下来的画坯上釉等工序做好准备工作。7.画坯:在坯上作画是陶瓷艺术的一大特色,画坯有许多种,有写意的、有贴好画纸勾画的,等等。8.上釉:画好的瓷坯,表面粗糙,上好釉后则全然不同,光滑而又明亮:不同的上釉手法,又有全然不同的效果。9.烧窑:瓷坯在窑内经受千度高温的烧炼。10.成瓷:经过几天的烧炼,窑内的瓷坯已变成了件件精美的瓷器。

电子元件生产工艺流程图

一、IC生产工艺流程图

整个流程分为六个部分:单晶硅片制造,IC设计,光罩制作,IC制造,IC测试和封装。

1、单晶硅片制造

单晶硅片是用来制造IC的,单晶硅片制造流程主要有拉晶、切割、研磨、抛光和清洗。

2、IC设计

IC设计主要是设计电路,并把设计好的电路转化为版图。

3、光罩制作

光罩制作是指将IC设计中心已设计好的电路版图以同样比例或减小比例转化到一块玻璃板上。

4、IC制造  

IC制造是指在单晶硅片上制作集成电路芯片,其流程主要有蚀刻、氧化、扩散/离子植入、化学气相沉积薄膜和金属溅镀。拥有上述功能的公司一般被称为晶圆代工厂。

5、IC测试 

在产品销售给客户前,为了确保IC的质量,在IC封装前(晶圆点测)或者封装后(终测)要对其功能进行测试。  

6、IC封装 

IC封装是指晶圆点测后对IC进行封装,其流程主要有晶圆切割、固晶、打线、塑封、切筋和成形、打码、终测、分选和编带。 

二、贴片电阻生产工艺流程图

工艺过程主要有三大基本操作步骤:涂布、贴装、焊接。

1、涂布   

涂布是将焊膏(或固化胶)涂布到PCB板上。涂布相关设备是:印刷机、点膏机。   

涂布相关设备是印刷机、点膏机。   

涂布设备:精密丝网印刷机、管状多点立体精密印刷机。   

2、贴装   

贴装是将器件贴装到PCB板上。   

相关设备贴片机。   

贴装设备:全自动贴片机、手动贴片机。   

3、回流焊: 

回流焊是将组件板加温,使焊膏熔化而达到器件与PCB板焊盘之间电气连接。   

相关设备:回流焊炉。

三、电容生产工艺流程图

1、原材料:陶瓷粉配料关键的部分(原材料决定MLCC的性能); 

2、球磨:通过球磨机(大约经过2-3天时间球磨将瓷份配料颗粒直径达到微米级); 3、配料——各种配料按照一定比例混合; 4、和浆——加添加剂将混合材料和成糊状; 

5、流沿:将糊状浆体均匀涂在薄膜上(薄膜为特种材料,保证表面平整); 

6、印刷电极:将电极材料以一定规则印刷到流沿后的糊状浆体上(电极层的错位在这个工艺上保证,不同MLCC的尺寸由该工艺保证); 

7、叠层:将印刷好电极的流沿浆体块依照容值的不同叠加起来,形成电容坯体版(具体尺寸的电容值是由不同的层数确定的); 

8、层压:使多层的坯体版能够结合紧密; 

9、切割:将坯体版切割成单体的坯体; 

10、排胶:将粘合原材料的粘合剂用390摄氏度的高温将其排除; 

11、焙烧:用1300摄氏度的高温将陶瓷粉烧结成陶瓷材料形成陶瓷颗粒(该过程持续几天时间,如果在焙烧的过程中温度控制不好就容易产生电容的脆裂);

12、倒角:将长方体的棱角磨掉,并且将电极露出来,形成倒角陶瓷颗粒; 

13、封端:将露出电极的倒角陶瓷颗粒竖立起来用铜或者银材料将断头封起来形成铜(或银)电极,并且链接粘合好电极版形成封端陶瓷颗粒(该工艺决定电容的); 

14、烧端:将封端陶瓷颗粒放到高温炉里面将铜端(或银端)电极烧结使其与电极版接触缜密;形成陶瓷电容初体; 

15、镀镍:将陶瓷电容初体电极端(铜端或银端)电镀上一层薄薄的镍层,镍层一定要完全覆盖电极端铜或银,形成陶瓷电容次体(该镍层主要是屏蔽电极铜或银与最外层的锡发生相互渗透,导致电容老衰); 

16、镀锡:在镀好镍后的陶瓷电容次体上镀上一层锡想成陶瓷电容成体(锡是易焊接材料,镀锡工艺决定电容的可焊性); 

17、测试:该流程必测的四个指标:耐电压、电容量、DF值损耗、漏电流Ir和绝缘电阻Ri(该工艺区分电容的耐电压值,电容的精确度等) 

扩展材料:

流程图的基本符号 

1、设计流程图的难点在于对业务逻辑的清晰把握。熟悉整个流程的方方面面。这要求设计者自己对任何活动、事件的流程设计,都要事先对该活动、事件本身进行深入分析,研究内在的属性和规律,

在此基础上把握流程设计的环节和时序,做出流程的科学设计,研究内在属性与规律,这是流程设计应该考虑的基本因素。 也是设计一个好的流程图的前提条件。

2、根据事物内在属性和规律进行具体分析,将流程的全过程,按每个阶段的作用、功能的不同,分解为若干小环节,每一个环节都可以用一个进程来表示。在流程图中进程使用方框符号来表达。

3、既然是流程,每个环节就会有先后顺序,按照每个环节应该经历的时间顺序,将各环节依次排开,并用箭头线连接起来。 箭头线在流程图中表示各环节、步骤在顺序中的进程,某环节,按需要可在方框中或方框外,作简要注释,也可不作注释。 

4、经常判断是非常重要的,用来表示过程中的一项判定或一个分岔点,判定或分岔的说明写在菱形内,常以问题的形式出现。对该问题的回答决定了判定符号之外引出的路线,每条路线标上相应的回答。

声明:关于《陶瓷工艺流程图》以上内容仅供参考,若您的权利被侵害,请联系13825271@qq.com
本文网址:http://www.25820.com/decorate/32_1915572.html