液控单向阀原理图

更新时间:02-01 装修 由 攻心 分享

双向液压锁是指两个液控单向阀组成双向液压锁,原理就是两个液控单向阀取对方油路的压力作为先导油,当一方管路没有压力时,另一方同时关闭。

必须保证液控单向阀有足够的控制压力,绝对不允许控制压力失压。应注意控制压力是否满足反向开启的要求。如果液控单向阀的控制引自主系统时,则要分析主系统压力的变化对控制油路压力的影响,以免出现液控单向阀的误动作。

液控单向阀是依靠控制流体压力,可以使单向阀反向流通的阀。这种阀在煤矿机械的液压支护设备中占有较重要的地位。

扩展资料:

液控单向阀与普通单向阀不同之处是多了一个控制油路,当控制油路未接通压力油液时,液控单向阀就象普通单向阀一样工作,压力油只从进油口流向出油口,不能反向流动。

当控制油路有控制压力输入时,活塞顶杆在压力油作用下向右移动,用顶杆顶开单向阀,使进出油口接通。若出油口大于进油口就能使油液反向流动。

在设计液压回路时,有时可将液控单向阀组合成换向阀使用。例如:用两个液控单向阀和一个单向阀并联(单向阀居中),则相当于一个三位三通换向阀的换向回路。需要指出,控制压力油油口不工作时,应使其通回油箱,否则控制活塞难以复位,单向阀反向不能截止液流。

当反向油出口压力超过一定值时,液控部分将失去控制作用,故内泄式液控单向阀一般用于反向出油腔无背压或背压较小的场合;而外泄式液控单向阀可用于反向出油腔背压较高的场合,以降低最小的控制压力,节省控制功率。系统若采用内卸式,则柱塞缸将断续下降发出振动和噪声。

方向控制阀

(一)换向阀

换向阀利用阀芯相对于阀体的相对运动,使油路接通、关断,或变换油流的方向,从而使液压执行元件启动、停止或变换运动方向。

换向阀在按阀芯形状分类时,有滑阀式和转阀式两种,滑阀式换向阀在液压系统中远比转阀式用得广泛。这里主要介绍滑阀式换向阀工作原理与典型结构。

1.工作原理

阀体和滑动阀芯是滑阀式换向阀的结构主体。它是靠移动阀芯,改变阀芯在阀体内的相对位置来改变油流方向的。图8-9所示,阀体孔有5条沉割槽,每条均有通油口,P为进油口,A、B为工作油口。阀芯是有3个凸肩的圆柱体,阀芯与阀体相配合,并可在阀体内轴向移动。当阀芯处于左边位置时,油口P与B相通,而A与T相通。此时压力油从P进入,经B输出,回油从A流入,经T流回油箱。当阀芯处于右边位置时,油口P与A相通,而B与T相通。此时压力油从P进入,经A输出,回油从B流入,经T流回油箱。因而改变了油流的方向,从而改变了执行元件的运动方向。

图8-9 换向阀的工作原理

2.典型结构

滑阀式换向阀按阀芯的可变位置数,可分为两位、三位等,通常用一个方框代表一个位置。按主油路的数目又可分为二通、三通、四通、五通等。表达方式是在相应位置的方框内表示油口的数目及通道的方向(表8-10)。图中箭头只表示油道,不表示油流方向,即油液也可以按反箭头方向流。

表8-10 滑阀式换向阀主体部分的结构形式

滑阀的操纵方式。常见的滑阀操纵方式示于图8-10中。

(1)手动换向阀:手动换向阀是依靠手操纵杠杆(或脚踏踏板)推动滑阀阀芯相对阀体运动来改变油液的通流状态,实现执行装置的换向。按换向定位方式的不同,手动换向阀有弹簧复位式和钢球定位式两种类型。图8-11a所示为三位四通钢球定位式手动换向阀,在外力撤销后不能自动回复原位,适用于动作不频繁,工作持续时间长的场合。图8-11b所示为三位四通弹簧复位式手动换向阀,在操纵手柄的外力撤销后阀芯能自动回复到原始位置,适用于动作频繁,工作持续时间短的场合。

图8-10 滑阀操纵方式

图8-11 三位四通手动换向阀

手动换向阀结构简单,动作可靠,但由于需要人力操纵,故适用于间歇动作且要求人工控制的小流量场合。

(2)电磁换向阀:电磁换向阀是利用电磁铁的通电吸合与断电释放而直接推动阀芯来控制液流方向的。

图8-12所示为三位四通电磁换向阀的结构图及图形符号。

图8-12 三位四通电磁换向阀

当两端电磁铁都不通电时,阀芯2在两端弹簧的作用下处于中间位置,油口P,T,A,B均不通。当右端电磁铁通电时,衔铁通过推杆6将阀芯推向左端,油口P与A相通,B与T相通;当左端电磁铁通电时,衔铁通过推杆6将阀芯推向右端,油口P与B相通,A与T相通;值得注意的是,两端电磁铁不能同时通电,否则阀芯位置不确定。

如前所述,电磁换向阀就其工作位置来说,有二位和三位等。二位电磁阀有一个电磁铁,靠弹簧复位;三位电磁阀有两个电磁铁。

操纵电磁换向阀用的电磁铁分为交、直流两种。按衔铁工作腔是否有油液又可分为“干式”和“湿式”。交流电磁铁的电压一般为220V。其特点是启动力较大,换向时间短,动作时间约为0.01~0.03s,价廉。但当阀芯卡住或吸力不够而使阀芯吸不上时,电磁铁容易因电流过大而烧坏,干式电磁铁会在10~15min后烧坏线圈(湿式电磁铁为1~1.5h),故工作可靠性差,动作时有冲击,寿命较短。因而在实际使用中交流电磁铁允许的切换频率一般为10次/min,不得超过30次/min。直流电磁铁电压一般为24V。其优点是工作较可靠,吸合、释放动作时间约为0.05~0.08s,允许使用的切换频率较高,一般可达120次/min,最高可达300次/min,不会因电流过大而烧坏,寿命长,体积小,但启动力较交流电磁铁小。

电磁换向阀由于受到电磁铁吸力较小的限制,它的额定流量一般在60L/min以下,流量更大的阀一般采用液压驱动或电液驱动。

(3)液动换向阀:液动换向阀是利用压力油来操纵阀芯运动的换向阀。图8-13为三位四通液动换向阀的结构和职能符号。阀芯是由其两端密封腔中油液的压差来移动的,阀芯两端有控制油腔分别接通控制油口K1和K2,当控制油路的压力油从阀右边的控制油口K2进入滑阀右腔时,阀芯向左移动,使压力油口P与B相通,A与T相通;当K1接通压力油时,阀芯向右移动,使得P与A相通,B与T相通;当K1、K2都通回油时,阀芯在两端弹簧和定位套作用下回到中间位置。

图8-13 液动换向阀的工作原理

由于操纵液动换向阀的液压推力可以很大,所以这种阀的阀芯尺寸可以做得很大,故它可以用于较大的额定流量。当对液动滑阀的换向性能有较高要求时,可在液动换向阀的两端装设可调节的单向节流阀,用来调节阀芯的移动速度,以减小换向冲击及噪声。

(4)电液换向阀:电液换向阀是由电磁换向阀和液动换向阀组合而成的,其中电磁换向阀也称为先导阀,它的作用是改变控制油液的液流方向,从而控制液动换向阀的阀芯移动,实现主油路换向;液动换向阀称为主阀,主要作用是控制系统中执行元件的换向。这里,电磁换向阀流过的流量仅用来推动主阀阀芯移动,流量较少,因此较小的电磁铁吸力就可以移动阀芯;液动换向阀由于依靠压力油驱动,因此可通过的流量较大。可见这种组合形式的换向阀实现了用较小的电磁铁吸力来控制主油路大流量的换向,适用于高压、大流量的液压系统。

图8-14所示为三位四通电液换向阀的结构图及图形符号。当左端电磁铁通电时,控制油路的压力油由通道a经左单向阀进入主阀芯左端,阀芯右端油液经右端节流阀,通道b和电磁换向阀的回油口流回油箱,阀芯右移,主油路的油口p与A相通,油口B与T相通;当右端电磁铁通电时,控制油路的压力油将主阀芯左移,油口P与B相通,油口A与T相通。当两端电磁铁均不通电时,电磁换向阀处于中位,主阀芯两端均与油箱连通,在对中弹簧的作用下处于中间位置,油口P,T,A,B均不通。控制油路的单向节流阀用于调节主阀阀芯的换向速度,避免换向冲击,其中单向阀用来保证进油畅通,节流阀用于阀芯两端油腔的回油节流。

电液换向阀控制油路的进油方式有内部进油和外部进油两种,回油方式也有内部回油和外部回油两种。图8-14所示为内部进油、内部回油的电液换向阀。

图8-14 三位四通电液换向阀

3.换向阀的中位机能分析

三位四通换向阀的阀芯在中间位置时,各通口间有不同的连通方式,可满足不同的使用要求。这种连通方式称为换向阀的中位机能。三位四通换向阀常见的中位机能、型号、符号及其特点,示于表8-11中。三位五通换向阀的情况与此相仿。不同的中位机能是通过改变阀芯的形状和尺寸得到的。

在分析和选择换向阀的中位机能时,通常考虑以下几点:

(1)系统保压。当P口被堵塞,系统保压,液压泵能用于多缸系统。当P口不太通畅地与T口接通时(如X型),系统能保持一定的压力供控制油路使用。

表8-11 三位四通换向阀常见中位机能

(2)系统卸荷。P口通畅地与T口接通时,系统卸荷。

(3)启动平稳性。阀在中位时,液压缸某腔如通油箱,则启动时该腔内因无油液起缓冲作用,启动不太平稳。

(4)液压缸“浮动”和在任意位置上的停止,阀在中位,当A、B两口互通时,卧式液压缸呈“浮动”状态,可利用其他机构移动工作台,调整其位置。

(二)单向阀及液压锁

单向阀用来控制油路的通断,它的作用是使油液只能一个方向流动。由于它关闭较严,常在回路中起保持部分回路压力的作用,也常与其他阀组成复合阀。

1.普通单向阀

普通单向阀的作用是使油液只能沿一个方向流动,不许它反向倒流。图8-15是一种管式普通单向阀的结构及职能符号图。其优点是结构简单,缺点是装于系统后更换弹簧不方便,容易产生振动与噪音。

对单向阀的性能要求是:动作灵敏、噪音小、密封性能好。单向阀被用来防止油反向流动时,开启压力小,全流量压力损失约0.1~0.3MPa。

图8-15 单向阀

2.液控单向阀

图8-16所示是液控单向阀的结构及职能符号。当控制口K处无压力油通入时,它的工作机制和普通单向阀一样;压力油只能从通口P1流向通口P2,不能反向倒流。当控制口K有控制压力油时,因控制活塞1右侧a腔通泄油口,活塞1右移,推动顶杆2顶开阀芯3,使通口P1和P2接通,油液就可在两个方向自由通流。

图8-16 液控单向阀

3.双向液压锁

液压锁用以保证工作装置不会因自重等外部原因出现下滑或串动。

双向液压锁是两个液控单向阀并在一起使用的(图8-17),通常使用在承重液压缸或马达油路中,用于防止液压缸或马达在重物作用下自行下滑,需要动作时,须向另一路供油,通过内部控制油路打开单向阀使油路接通,液压缸或马达才能动作。

双向液压锁通常不推荐用于高速重载工况,而常用于支撑时间较长,运动速度不高的闭锁回路。

例如,不采用液压锁,当钻机放下支腿进行作业时,虽然换向阀放在中间位置,A,B口都被截断(若是O型机能),但由于液压缸支腿油压很高,而换向阀又是靠很小的间隙密封的,故仍会有油液泄漏,这将造成液压缸活塞杆缓慢缩回,这是不允许的。采用了液压锁,液压缸的液压油把锥阀芯压紧在阀座上,油压越高,压得越紧,不泄漏,不缩回。关键区别是换向阀类元件是靠间隙密封,故有泄漏。而单向阀是靠锥面密封,所以能保持密封压力。

(三)梭阀

如图8-18所示,梭阀相当于两个单向阀组合的阀,其作用相当于“或门”。有两个进口P1和P2,一个出口A,其中P1和P2都可与A口相通、但P1和P2不相通。P1和P2中的任一个有信号输入,A都有输出。若P1和P2都有信号输入,则先加入侧或信号压力高侧的信号通过A输出,另一侧则被堵死,仅当P1和P2都无信号输入时,A才无信号输出。它可将控制信号有次序地输入控制执行元件,常见的手动与自动控制的并联回路中就用到梭阀。

液控单向阀的工作原理是什么

液控单向阀的工作原理:①当控制油路未接通压力油液时,液控单向阀就象普通单向阀一样工作,压力油只从进油口流向出油口,不能反向流动。②当控制油路有控制压力输入时,活塞顶杆在压力油作用下向右移动,用顶杆顶开单向阀,使进出油口接通。若出油口大于进油口就能使油液反向流动。

请画出液压锁的原理图并对控制方式作出说明

图中的1、2两个液控单向阀所构成就是液压锁。当控制油中没有压力油时,液控单向阀等同于一般的单向阀,缸被锁住。而在任一通路中有压力油,即构成了普通单向阀进油,压力油打开液控单向阀回油的油路连接。

哪位高手能详细解释下这种液控单向阀的控制原理

当液压控制口X或Y不通压力油时候,此阀相当于一个单向阀, 油液只能从A口流入顶开阀芯,然后从B口流出。如果从油液B口流入则阀芯被弹簧和油液顶死而不能打开,油液不能通过。 当液压控制口通压力油时,该压力油推动活塞和推杆,然后顶开阀芯, 此时不管油液从A口进还是从B口进, 油液都可以通过阀体。

单向阀的原理

1.普通单向阀 普通单向阀的作用,是使油液只能沿一个方向流动,不许它反向倒流。图(a)所示是一种管式普通单向阀的结构。压力油从阀体左端的通口P1流入时,克服弹簧3作用在阀芯2上的力,使阀芯向右移动,打开阀口,并通过阀芯2上的径向孔a、轴向孔b从阀体右端的通口流出。但是压力油从阀体右端的通口P2流入时,它和弹簧力一起使阀芯锥面压紧在阀座上,使阀口关闭,油液无法通过。图(b)所示是单向阀的职能符号图。 单向阀1—阀体2—阀芯3—弹簧2.液控单向阀 液控单向阀(a)结构图 (b)职能符号图1—活塞2—顶杆3—阀芯液控单向阀有一个控油口“K”,当控制口不通压力油时,此阀的作用与单向阀相同,压力油只能单向流动;当控油口通压力油且作用在控制活塞上的液压力足以克服提动头(锥阀)上的弹簧力,P2腔的油压作用于提动头(锥阀)上的液压力以及P1腔的压力油作用于控制活塞背面的液压力之和时,控制活塞通过活塞杆使提动头(锥阀)抬起,阀将保持开启状态,液流双向都能通过。液控单向阀具有良好的单密封性能,常用于执行元件需要长时间保压,锁紧的情况!也用于防止立式液压缸停止时在自重作用下下滑等。参考:http://wenku.baidu.com/view/42fb396f27d3240c8447ef9c.html

机械液压转向控制阀作用原理要详细 谢谢|

液压控制阀按其作用可分为方向控制阀、压力控制阀和流量控制阀三大类。本章介绍方向控制阀。 方向控制阀是用来改变液压系统中各油路之间液流通断关系的阀类。如单向阀、换向阀及压力表开关等。本章主要介绍方向控制阀和方向控制回路。本章提要本章主要内容为 :阀口特性与阀芯的运动阻力,节流边与液压桥路 单向阀换向阀换向回路与锁紧回路液压阀的连接方式 可用于控制液流的压力、方向和流量的元件或装置称为液压控制阀。液压控制阀的分类:1. 按功能:方 向 控 制 阀——用于控制液流的流动方向;压 力 控 制 阀——用于控制液流的压力大小;流 量 控 制 阀——用于控制液流的流量大小;2. 按阀芯结构:滑阀——阀芯为多端圆柱体,阀芯相对阀体作轴向 运动;锥阀——阀芯为锥柱体,阀芯相对阀体作轴向运动;转阀——阀芯为带圆周方向槽的圆柱体,阀芯相对阀体转动;3. 按控制方式: 有手动操作、电磁铁控制、比例电磁铁控制、液压控制等。4. 按安装方式: 有板式阀、管式阀、叠加阀、插装阀等。5.1 阀口特性与阀芯的运动阻力5.1.1 阀口流量公式及流量系数 对于各种滑阀、锥阀、球阀、节流孔口,通过阀口的流量均可用下式表示:1、滑阀的流量系数 流量系数Cq与雷诺数Re有关。对于滑阀,若阀口为锐边,可取Cq=0.6~0.65。 2、锥阀的流量系数锥阀阀口流量系数约为Cq=0.77~0.82。5.1.2 节流边与液压桥路 (1)阀口与节流边 阀中的可变节流口可以看成是由两条作相对运动的边线构成,故一个可变节流口可以看成是一对节流边。其中固定不动的节流边在阀体上,可以移动的节流边则在阀芯上。这一对节流边之间的距离就是阀的开度Δx。 若进油道与阀芯环形槽相通,那么出油道必须与阀体的环形槽相通,阀口正好将两个通道隔开。 5.1.2 节流边与液压桥路 (1)阀口与节流边 阀体的节流边是在阀体孔中挖一个环形槽(或方孔、圆孔)后形成的,阀芯的节流边也是在阀芯中间挖出一个环形槽后形成的。阀芯环形槽与阀体环形槽相配合就可以形成一个可变节流口(即阀口)。 如果在阀芯上不开环形槽,而是直接利用阀芯的轴端面作为阀芯节流边,则阀芯受到液压力的作用后不能平衡,会给控制带来困难。通过在阀芯上开设环形槽,形成图(b)所示平衡活塞,则阀芯上所承受的液压力大部分可以得到平衡,施以较小的轴向力即可驱动阀芯。 10(2)液压半桥与三通阀 液压半桥只有一个控制油口A(或B),只能用于控制有一个工作腔的单作用缸或单向马达。三通阀就是液压半桥。 由于液压半桥有三个通道,因此必须在阀芯和阀体上共开出三个环形槽,让P、O、A分别与三个环形槽相通,并且受控压力A要放在P和O的中间,以便于A能分别与P和O接通。11液压半桥有两种布置方案: 第一种方案是将A放在阀芯环形槽中,而将P、O两腔放在阀体环形槽中; 另一种方案是将A放在阀体环形槽中,而将P、O两腔放在阀芯环形槽中。 12(3)液压全桥与四通阀 全桥应该有Ol、A、P、T、O2等5个通道。相应地,阀芯和阀体应共有5个环形槽。13 液压全桥有两种布置方案。 第一种:将A、B通道布置在阀体环形槽中,将O1、P、O2布置在阀芯环形槽中(四台肩四通阀) 第二种:将阀芯槽与阀体槽所对应的油口对换,让A、B通道布置在阀芯环形槽中,O1、P、O2布置在阀体环形槽中(三台肩式四通阀)14将A、B通道布置在阀体环形槽中,将O1、P、O2布置在阀芯环形槽中将A、B通道布置在阀芯环形槽中,O1、P、O2布置在阀体环形槽中155.1.3 阀芯驱动与阀芯运动阻力 (1)作用在圆柱滑阀上的稳态液动力 稳态液动力指向阀口关闭的方向16此力指向阀口关闭方向此力指向阀口开启方向17(3)、作用在滑阀上的液压卡紧力 开一条均压槽时,K=0.4;开三条等距槽时,K=0.063;开七条槽时,K=0.027。 侧向力指向阀芯卡紧方向侧向力指向阀芯对中方向18(a)倒锥(b)顺锥(c)倾斜 5.2 单向阀 单向阀只允许经过阀的液流单方向流动,而不许反向流动。单向阀有普通单向阀和液控单向阀两种。 5.2.1 普通单向阀 正向导通,反向不通19单向阀的工作原理 2021不能作单向阀22直通式单向阀中的油流方向和阀的轴线方向相同。 上图所示的阀属于管式连接阀,此类阀的油口可通过管接头和油管相连,阀体的重量靠管路支承,因此阀的体积不能太大太重。23 直角式单向阀的进出油口A(P1)、B(P2)的轴线均和阀体轴线垂直。 图5.11(a)所示的阀属于板式连接阀,阀体用螺钉固定在机体上,阀体的平面和机体的平面紧密贴合,阀体上各油孔分别和机体上相对应的孔对接,用“O”形密封圈使它们密封。242526(2)对单向阀的要求 ①开启压力要小。 ②能产生较高的反向压力,反向的泄漏要小。 ③正向导通时,阀的阻力损失要小。 ④阀芯运动平稳,无振动、冲击或噪声。275.1.2 液控单向阀(1)液控单向阀的工作原理和图形符号28(1)简式内泄型液控单向阀 此类阀不带卸荷阀芯,无专门的泄油口。29(1)简式外泄型液控单向阀 此类阀不带卸荷阀芯,有专门的泄油口,外泄油口通油箱,故可用于较高压力系统。P1—正向进油口; P2 —正向出油口 K —控制口30

声明:关于《液控单向阀原理图》以上内容仅供参考,若您的权利被侵害,请联系13825271@qq.com
本文网址:http://www.25820.com/decorate/32_1977567.html