01手机屏上有膜,但屏还分外屏与内屏,外屏就是触摸屏,内屏就是成显图像的,那膜就一个保护外屏的,这样说你们懂了吗?02钢化膜碎了有分层痕迹,不影响触摸屏功能。手机外屏碎了有裂纹且较深,功能也不正常。03直接把膜拿掉就可以了,反正坏了肯定是要更换的。04如果贴的是玻璃膜,把手机对着光打侧看就能看出来,一般都是膜裂了。如果不是玻璃膜,也可以打侧看,有裂纹一般是屏碎了。05眼睛与屏幕基本平行,对着光线能看到裂纹的就是钢化膜破了。看不到的就是触摸屏破了。06钢膜碎了用指甲刮有反应。07内屏负责显示、外屏负责触摸、膜负责保护。所以显示出问题是内屏坏,触摸出问题是外屏坏,至于膜碎了,对使用没太大影响。如果你手机显示正常,触摸正常,只是有裂痕,大概就是膜碎了而已,换张膜就行。08拿起手机,角度斜30度左右,从侧面看手机膜的裂痕和屏的裂痕是否重合,如果重合的话就是屏也坏了,如果不重合就是膜坏了,换张膜就好了。这是核心技术。09最笨的方法就是,找高手替你分辨到底是屏坏了还是膜坏了,朋友,同事,或者修手机的都可以。
玻璃绳是玻璃纤维的,陶瓷纤维是另一种材料,两者的使用温度差几百度呢。北京费普福
小家伙把小林的手机拿着在玩,有时候,他弄到广告,弄不出来他想看的视频,他就容易生气,一生气就把小林的手机往地上摔,小林的手机被他摔了很多次了,小林换了手机壳,换了手机膜,还是禁不住他几摔,才换的钢化膜,还没有管到两天,又被他摔得到处是裂痕。 小林想着这样下去也不是办法啊,早晚手机会报废在他的手里,得想办法再增加手机的保护。 小林首先想到的是再换个经摔的手机壳,但看来看去,也没有看到合适的,要么就是全包的不好看,现在用了,以后就用不出手了;要么就是看起来还不错,就是价格太贵,而且,估计也经不住他摔。结果几天下来都没有做好决定。 手机壳不行,那再看看手机膜,有没有经摔的手机膜? 小林又在手机上查了一下,好像新出了个什么可弯曲的陶瓷纤维膜,还有个什么气囊钢化膜,小林看了看,一时没有下定主意到底买哪个,就去做其他的事了。 这样一来,又是一两天没有下结论。 后来,小林想着,这么个小东西,半天都没有弄好,效率也太低了,与其花些时间在这些小事情上,还不如早做决定,把时间用到更好的事情上去。 这样一来,小林就不再纠结什么到底选哪个了,直接认真看了看,看到不错的,再浏览一下大家的评价,觉得可以就直接下单了。 最终,小林还是选择的还是多买几张手机膜,手机壳的话,用过这段时间,就用不了了,买来也是浪费钱。 而手机膜就不一样了,即使这段时间用过了,后面也可以换了继续用,这样才能把东西发挥它最大的价值。
钢化膜比陶瓷纤维膜好。1、钢化膜最大的优点是手感自然,而且硬度高,不容易出现划痕,保护能力好。2、陶瓷纤维膜具有耐高温、耐化学腐蚀、机械强度高、抗微生物能力强、渗透量大、可清洗性强、孔径分布窄、分离性能好和使用寿命长等特点。但不足之处是造价较高、无机材料脆性大、弹性小、给膜的成型加工及组件装备带来一定的困难等。
探究水处理陶瓷膜制备与应用技术研究进展论文
膜技术被认为是21 世纪最优前景的水处理技术之一,膜材料技术、膜分离技术在近十几年得到很大发展,在水处理领域得到了广泛应用。水处理陶瓷膜的过滤、分离性能与膜孔径大小及其分布、孔隙率、表面形貌等有密切关系。陶瓷膜的活性分离层是颗粒以任意堆积方式形成的,孔隙率通常为30 ~ 35%,且曲折因子调控较为困难,陶瓷膜的水处理效能受到局限。研究陶瓷膜制备、修饰、工艺优化新技术以提高其过滤、分离、抗污染效能是水处理陶瓷膜领域的研究重点。
1. 水处理陶瓷膜制备技术
1.1 致孔剂制备技术
致孔剂是提高水处理陶瓷孔隙率简单又经济的方法,致孔剂可分为无机物和有机物两类。无机致孔剂有碳酸铵、碳酸氢铵和氯化铵等高温易分解的盐类或无机碳如石墨、煤粉等;有机致孔剂主要包括天然纤维、高分子聚合物,如锯末、淀粉、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)等。Yang 等 以Al2O3 为膜基体,以膨润土为烧结助剂,以玉米淀粉作为造孔剂通过挤出、交联、干燥、烧结等过程制备陶瓷膜。研究发现随着淀粉含量的增加,Al2O3 支撑体的最大孔径和平均孔径均有所增大,陶瓷膜的孔隙率可有24% 提高至38%。
1.2 模板剂制备技术
模板剂可有效控制所合成材料的形貌、结构和大小,并制备出孔结构有序、孔径均一、孔隙率大的微孔、介孔和大孔材料。模板剂法具有丰富的选材和灵活的调节手段,采用模板剂法制备水处理陶瓷膜极具前景。Xia 等 以有机聚苯乙烯微球为模板剂,采用UV 聚合的方法制备出孔径为100nm 的三维有序聚氨酯大孔材料。Sadakane 等 以PMMA 为模板剂制备出具有三维有序大孔的金属氧化物材料,其孔隙率范围为66 ~ 81%。表面活性剂在溶液中可以形成胶束、微乳、液晶、囊泡等自组装体,也常被用作自组装技术中的有机物模板剂。利用表面活性剂十六烷基三甲基溴化铵为模板剂可制备出有序的介孔分子筛MCM41,具有多种对称性能的孔道,孔径在2 ~ 50nm 的.范围内。Choi 等以Tween80 为模板剂制备了具有梯度孔径结构的TiO2-Al2O3 陶瓷膜,陶瓷膜的渗透性能大大提高。
1.3 纤维层积制备技术
陶瓷纤维材料在成膜过程中可以迅速在支撑体表面沉积搭桥,明显减少了膜层的内渗,并且容易得到较高的孔隙率和比表面积,对膜材料渗透性能的提高具有显著作用。Ke 等 以TiO2 纤维为原料,通过旋涂法制备出平均孔径在50nm 的陶瓷纤维膜,对球形粒子截留率超过95%,膜通量在900Lm-2h-1 以上。
1.4 溶胶- 凝胶制备技术
溶胶- 凝胶技术主要是通过调整材料尺寸控制陶瓷膜分离层的分离精度。溶胶- 凝胶法可形成纳米级别的溶胶,得到的陶瓷膜层孔径小、孔径分布窄,适用于高渗透选择性的超滤膜和纳滤膜的制备。Tsuru 等 利用聚合溶胶路线制备出平均孔径0.7 ~ 2.5nm 的TiO2 纳滤膜,对PEG 的截留分子量为500 ~ 000Da,对Mg2+ 的截留率为88%。
2. 水处理陶瓷膜修饰技术
2.1 化学气相沉积修饰技术
采用化学气相沉积法(CVD)在陶瓷膜表面沉积硅氧化物或金属氧化物来改善陶瓷膜孔结构以及过滤性能,是一项非常有效的手段。Lin 等 采用CVD 技术对平均孔径为4nm 的Al2O3 陶瓷膜进行修饰,制备出孔径范围为0.4 ~ 0.6nm 的SiO2 陶瓷膜。CVD 的方法一般需要在高温、真空的环境中进行,并且要求前驱物具有一定的挥发性。
2.2 原子层沉积修饰技术
原子层沉积技术(ALD)可将物质以单原子膜形式层层沉积在陶瓷膜表面,从而构建陶瓷膜表面微纳结构。Li 等 在平均孔径50nm 的陶瓷膜表面上通过原子层沉积氧化铝层,通过控制原子层沉积次数来调控膜的平均孔径,改性后陶瓷膜对BSA的截留率由2.9% 升至97.1%。
2.3 表面接枝修饰技术
表面接枝技术常被用来调控膜材料的表面性质,接枝过程将改变膜的孔结构,达到减小孔径的目的。陶瓷膜表面一般会吸附水形成大量羟基,通过接枝有机硅烷的方法在介孔膜表面可以修饰一层有机分子层。通过调控接枝分子的链长与官能团等特性可以实现调控孔径大小的目的,且能获得特殊的表面性质。Singh 等 发现接枝硅烷偶联剂可以使多孔陶瓷膜孔径进一步变小。Cohen 等 将亲水性PVP 接枝在陶瓷超滤膜表面上,改性后的膜孔径减小,截留性能提高,抗污染性能得以改善,可用于油水分离。
3. 水处理陶瓷膜制备与修饰工艺优化
3.1 陶瓷膜材料、添加剂选取
水处理陶瓷膜的制备主要集中于原材料及烧结工艺,通过添加烧结助剂以降低烧结温度、采用低成本易烧结原料以降低原料成本,以及利用先进的烧结工艺以达到低成本控制是陶瓷膜的研究重点。陶瓷膜制备过程中常在基膜材料中加入一些液相型或者固相型烧结助剂。高岭土、钾长石等天然硅酸盐黏土矿物在较低温度下便能熔融形成液相,在颗粒间毛细管力的作用下润湿并包裹膜材料基体颗粒,并将颗粒黏结起来,辅以多孔陶瓷膜良好的机械强度。氧化钛、氧化锆等金属氧化物能与陶瓷膜基体形成多元氧化物固熔物而使烧结温度下降,有利于陶瓷膜制备。
3.2 陶瓷膜烧制过程优化
多孔陶瓷膜必须经过多次烧结,存在烧结工艺周期长、能耗高的问题。除采用烧结助剂或采用易烧结材料以降低烧结温度外,减少烧结时间或缩短制备周期也能达到降低烧结工艺成本的目的。在减少烧结时间方面,微波烧结技术是一种非接触技术,热通过电磁波的形式传递,可直达材料内部,最大限度地减少了烧结的不均匀性,可在缩短烧结时间的同时,降低烧结温度。微波技术大多用于制备几近致密的陶瓷复合物,同时由于其可改善材料组织、提高材料性能,亦可用于多孔陶瓷复合物的制备。在缩短烧结周期方面,一些研究者借鉴低温共烧陶瓷技术在多层结构陶瓷元器件封装领域的成功应用,提出采用共烧结技术来减少烧结次数,从而降低烧结成本。
4. 结论
水处理陶瓷膜制备技术以提高陶瓷膜整体性能为目的,通过调控陶瓷膜微结构可实现陶瓷膜制备技术的突破。目前,致孔剂制备技术、模板剂制备技术、纤维层积制备技术、溶胶- 凝胶技术、固态粒子烧结技术等陶瓷膜制备技术已日益得到关注。水处理陶瓷膜制备技术研究将引领和推动陶瓷膜技术及产业的发展,缓解水厂升级改造、提升水质品质的瓶颈压力。
;