同角三角函数的基本关系与诱导公式

更新时间:02-03 经验 由 趁年轻 分享

三角函数倒数关系:tanαcotα=1;sinαcscα=1;cosαsecα=1。

三角函数商数关系:tanα=sinα/cosα;cotα=cosα/sinα。

平方关系:sin?α+cos?α=1;1+tan?α=sec?α;1+cot?α=csc?α。

诱导公式:

公式一:设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα(k∈Z)。

cos(2kπ+α)=cosα(k∈Z)。

tan(2kπ+α)=tanα(k∈Z)。

cot(2kπ+α)=cotα(k∈Z)。

公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα。

cos(π+α)=-cosα。

tan(π+α)=tanα。

cot(π+α)=cotα。

公式三:任意角α与-α的三角函数值之间的关系(利用原函数奇偶性):

sin(-α)=-sinα。

cos(-α)=cosα。

tan(-α)=-tanα。

cot(-α)=-cotα。

声明:关于《同角三角函数的基本关系与诱导公式》以上内容仅供参考,若您的权利被侵害,请联系13825271@qq.com
本文网址:http://www.25820.com/exp/16_2867316.html