方法一、用数据拟合工具箱CurveFittingTool
打开CFTOOL工具箱。在matlab的commandwindow中输入cftool,即可进入数据拟合工具箱。
输入两组向量x,y。
首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。
例如在命令行里输入下列数据:
x=[196,186,137,136,122,122,71,71,70,33];
y=[0.012605;0.013115;0.016866;0.014741;0.022353;0.019278;0.041803;0.038026;0.038128;0.088196];
数据的选取。打开曲线拟合共工具界面,点击最左边的Xdata和Ydata,选择刚才输入的数据,这时界面中会出现这组数据的散点图。
选择拟合方法,点击Fit
左侧results为拟合结果,下方表格为误差等统计数据。
方法二、用神经网络工具箱
1、打开神经网络工具箱,在commandwindow内输入nftool,进入Neuralfittingtool
2、导入数据,点击next,导入Inputs为x,Targets为y。
3、选择网络参数,点击next,选择训练集和测试集数量,点next,选隐藏层节点个数。
4、训练数据,点next,选train。
5、绘制拟合曲线,训练完成后电机plotfit
训练结果参数在训练完后自动弹出
神经网络工具箱可以用command写,请搜索关键字matlab神经网络工具箱函数。
方法三、用polyfit函数写
polyfit函数是matlab中用于进行曲线拟合的一个函数。其数学基础是最小二乘法曲线拟合原理。曲线拟合:已知离散点上的数据集,即已知在点集上的函数值,构造一个解析函数(其图形为一曲线)使在原离散点上尽可能接近给定的值。
调用方法:a=polyfit(xdata,ydata,n),
其中n表示多项式的最高阶数,xdata,ydata为将要拟合的数据,它是用数组的方式输入。输出参数a为拟合多项式y=a1x^n+...+anx+a,共n+1个系数。
%例程A=polyfit(x,y,2);z=polyval(A,x);plot(x,y,'r*',x,z,'b')
方法四、自行写算法做拟合
请参考数值分析教科书,拟合、插值方法较多,算法并不复杂,灵活套用循环即可