a叉乘b再叉乘c等于=a点乘c再点乘b减去b点乘c在点乘a.空间解析几何中的公式,用坐标表达式可以证明。
a1b2c3+b1c2a3+c1a2b3-a1c2b3-b1a2c3-c1b2a3
a×(b×c)=b(a·c)-c(a·b),套入公式,所以r×(ω×r)=ωr^2-r(ω·r)
拉格朗日公式:a×(b×c)=b(a·c)−c(a·b)
二重向量叉乘化简公式及证明,可以简单地记成“BAC-CAB”。
a×(b×c)=b(a·c)-c(a·b),套入公式,所以r×(ω×r)=ωr^2-r(ω·r)拉格朗日公式:a×(b×c)=b(a·c)−c(a·b)二重向量叉乘化简公式及证明,可以简单地记成“BAC-CAB”。这个公式在物理上简化向量运算非常有效。需要注意的是,这个公式对微分算子不成立。这里给出一个和梯度相关的一个情形;这是一个霍奇拉普拉斯算子的霍奇分解的特殊情形。扩展资料运算法则:
1、反交换律:a×b=-b×a2、加法的分配律:a×(b+c)=a×b+a×c。
3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。
4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。
5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。
6、两个非零向量a和b平行,当且仅当a×b=0。