svm和lssvm的区别?
SVM与LS-SVM的比较
(1)优化问题的构造
从前述对SVM与LS-SVM方法在样本分类与回归估计的分析中可以看出,两种方法的优化问题的构造上,目标函数分别采用了误差因子的一次项与二次项,同时约束条件分别采用了不等式约束与等式约束形式。这两方面的差别也导致了两种方法在求解过程中的差异。
(2)优化问题的求解
SVM求解QP问题中,变量维数等于训练样本的个数,从而使其中矩阵元素的个数是训练样本个数的平方。当数据规模达到一定程度时,SVM算法的求解规模就会使一些传统办法难以适应。针对SVM的求解困难的问题,也产生了一些相应的解决办法,如选块算法和SMO算法等。这些算法在一定程度上简化了SVM优化问题的求解,促进了SVM的应用发展。而LS-SVM方法通过求解线性方程组实现最终的决策函数,在一定程度上降低了求解难度,提高了求解速度,使之更能适合于求解大规模问题,更能适应于一般的实际应用。虽然并不一