智能制造是什么?
智能制造到底是什么?
当前,智能制造成为业界关注的热点,但是智能制造究竟是什么?又包含哪些范畴呢?今天,我们就站在制造企业的角度,来系统地分析一下这些问题。
关于智能制造,其内涵是实现整个制造业价值链的智能化和创新,是信息化与工业化深度融合的进一步提升。
智能制造融合了信息技术、先进制造技术、自动化技术和人工智能技术。目前智能制造的“智能”还处于Smart的层次,智能制造系统具有数据采集、数据处理、数据分析的能力,能够准确执行指令,能够实现闭环反馈.
而智能制造的趋势是真正实现“智能的”,智能制造系统能够实现自主学习、自主决策,不断优化。
在智能制造的关键技术当中,智能产品与智能服务可以帮助企业带来商业模式的创新;智能装备、智能产线、智能车间到智能工厂,可以帮助企业实现生产模式的创新;智能研发、智能管理、智能物流与供应链则可以帮助企业实现运营模式的创新;而智能决策则可以帮助企业实现科学决策。
智能制造的主要技术之间是息息相关的,制造企业应当渐进式、理性地推进这十项智能技术的应用。以下将对这些技术一一进行解读。
智能产品(Smart Product)智能产品通常包括机械、电气和嵌入式软件,具有记忆、感知、计算和传输功能。典型的智能产品包括智能手机、智能可穿戴设备、无人机、智能汽车、智能家电、智能售货机等。
企业应该思考如何在产品上加入智能化的单元,提升产品的附加值。比如在工程机械上添加传感器,可以对产品进行定位和关键零部件的状态监测,为实现智能服务打下基础。
智能服务(Smart Service)基于传感器和物联网(IoT),可以感知产品的状态,从而进行预防性维修维护,及时帮助客户更换备品备件,甚至可以通过了解产品运行的状态,帮助客户带来商业机会。还可以采集产品运营的大数据,辅助企业进行市场营销的决策。
此外,企业通过开发面向客户服务的APP,也是一种智能服务的手段,可以针对企业购买的产品提供有针对性的服务,从而锁定用户,开展服务营销。
智能装备(Smart Equipment)制造装备经历了机械装备到数控装备,目前正在逐步发展为智能装备。智能装备具有检测功能,可以实现在机检测,从而补偿加工误差,提高加工精度,还可以对热变形进行补偿。
以往一些精密装备对环境的要求很高,现在由于有了闭环的检测与补偿,可以降低对环境的要求。
智能产线(Smart Production line)目前,很多企业的技术改造重点,就是建立自动化生产线、装配线和检测线。自动化生产线可以分为刚性自动化生产线和柔性自动化生产线,柔性自动化生产线一般建立了缓冲。为了提高生产效率,工业机器人、吊挂系统在自动化生产线上应用越来越广泛。
目前,很多汽车整车厂已实现了混流生产,在一条装配线上可以同时装配多种车型。
智能产线在我国制造企业的应用还处于起步阶段,但必然是发展的方向。智能产线的特点是:
在生产和装配的过程中,能够通过传感器或RFID自动进行数据采集,并通过电子看板显示实时的生产状态;
能够通过机器视觉和多种传感器进行质量检测,自动剔除不合格品,并对采集的质量数据进行SPC分析,找出质量问题的成因;
能够支持多种相似产品的混线生产和装配,灵活调整工艺,适应小批量、多品种的生产模式;
具有柔性,如果生产线上有设备出现故障,能够调整到其他设备生产;
针对人工操作的工位,能够给予智能的提示。
智能车间(Smart workshop)无论什么制造行业,制造执行系统(MES)成为企业的必然选择。对于药品、食品等行业,国家有强制性的追溯要求,需要通过GMP等行业认证,因此推进MES更加紧迫。
前文提到的数字化制造(DM)技术也是智能车间的支撑工具,可以帮助企业在建设新厂房时,根据设计的产能科学进行设备布局,提升物流效率,提高工人工作的舒适程度。
对于机械制造企业,可以通过DNC技术实现设备状态信息和加工代码的上传下达,目前已有成熟的产品。
另外,实现车间的无纸化,也是智能车间的重要标志,企业可以应用三维轻量化技术,将设计和工艺文档传递到工位。
此外,智能车间还有一个典型应用,就是视频监控系统不仅记录视频,还可以对车间的环境,人员行为进行监控、识别与报警。
例如,智能车间应当在温度、湿度、洁净度的控制和工业安全(包括工业自动化系统的安全、生产环境的安全和人员安全)等方面达到智能化水平。
智能工厂(Smart Factory)一个工厂通常由多个车间组成,大型企业有多个工厂。前文已经提到了智能工厂与数字化工厂的区别,一个普遍的共识是,仅仅有自动化生产线和一大堆机器人,并不是智能工厂。
作为智能工厂,不仅生产过程应实现自动化、透明化、可视化、精益化,同时,产品检测、质量检验和分析、生产物流也应当与生产过程实现闭环集成。
工人可以通过智能手机查询工单,可以开视频会议,维修人员碰到疑难问题,可以通过手机视频寻求专家解答,还给智能手机配备了RFID和条码扫描的接口,这也是一个智能工厂的创新实践。
智能工厂还应当重视利用智能的检测仪器,检测结果直接进入信息系统,无需人工干预。而展望未来,AR(Augmented Reality,增强现实)技术也将在智能工厂大显身手。
智能研发(Smart R&D)企业要开发智能产品,需要机电软多学科的协同配合;要缩短产品研发周期,需要深入应用仿真技术,建立虚拟数字化样机,实现多学科仿真,通过仿真减少实物试验;需要贯彻标准化、系列化、模块化的思想,以支持大批量客户定制或产品个性化定制;需要将仿真技术与试验管理结合起来,以提高仿真结果的置信度。
目前,流程制造企业已开始应用PLM系统实现工艺管理和配方管理,LIMS(实验室信息管理系统)系统比较广泛。
另外,汽车整车企业和设计公司广泛应用Cave技术,利用虚拟现实技术辅助产品研发,也是一个智能研发技术。
全球PLM领导厂商之一,达索系统公司提出了三维体验(3D Experience)的理念,在VR和AR方面提供了解决方案。
将仿真技术与精密制造紧密结合,可以将以为需要多个零件分散制造融合为一个复杂零件,从而提升了零件的工艺性能,降低了零件的重量。
智能管理(Smart Management)制造企业核心的运营管理系统还包括人力资产管理系统(HCM)、客户关系管理系统(CRM)、企业资产管理系统(EAM)、能源管理系统(EMS)、供应商关系管理系统(SRM)、企业门户(EP)、业务流程管理系统(BPM)等,国内企业也把办公自动化(OA)作为一个核心信息系统。
为了统一管理企业的核心主数据,近年来主数据管理(MDM)也在大型企业开始部署应用。实现智能管理和智能决策,最重要的条件是基础数据准确和主要信息系统无缝集成。
智能物流与供应链(Smart logistics and SCM)实现智能物流与供应链的关键技术包括自动识别技术,例如RFID或条码、GIS/GPS定位、电子商务、EDI(电子数据交换),以及供应链协同计划与优化技术。
其中,EDI技术是企业间信息集成(B2B Integration)的必备手段,然而我国企业对EDI的重视程度非常不够。
EDI技术最重要的价值,就是可以实现供应链上下游企业之间,通过信息系统之间的通讯,实现整个交易过程无需人工干预、而且不可抵赖。
智能决策(Smart Decision Making)企业在运营过程中,产生了大量的数据。
一方面是来自各个业务部门和业务系统产生的核心业务数据,比如与合同、回款、费用、库存、现金、产品、客户、投资、设备、产量、交货期等数据,这些数据一般是结构化的数据,可以进行多维度的分析和预测.
这就是BI(Business Intelligence,业务智能)技术的范畴,也被称为管理驾驶舱或决策支持系统。
同时,企业可以应用这些数据提炼出企业的KPI,并与预设的目标进行对比。从技术角度来看,内存计算是BI的重要支撑。
对于制造企业而言,要实现智能决策,首先必须将业务层的信息系统用好,实现信息集成,确保基础数据的准确,这样才能使信息系统产生的数据真实可信。