两个随机变量服从同一分布是否相互独立?
设两个变量为X、Y,对应的事件为A、B
(1)当X、Y均服从0、1分布,即X={1,A发生;0,A不发生};Y={1,A发生;0,A不发生};
写出X、Y、XY的分布列,因为X、Y不相关,则cov(X,Y)=EXY-EXEY=P(AB)-P(A)P(B)=0,推出
P(AB)=P(A)P(B),所以X、Y相互独立。
(2)若为其他分布,则不能推出另外若X、Y为二维正态分布,则不相关等价于独立。