某二叉树的先序和后序遍历序列正好相反?
答案是高度等于其节点数的二叉树; 分析如下: 先序遍历顺序是:M-L-R,后序遍历顺序是:L-R-M,可以看到,只有中间的结点(M)顺序变化了,左右结点相对位置是不变的; 那可以推断出,要满足题意的话“二叉树的先序序列与后序序列正好相反”,说明整个二叉树左子树或者右子树有一个没有(遍历就成了,先:M-L ;后:L-M 或者 先:M-R ;后:R-M )也就是必然是一条链。因此该二叉树的高度一定等于其节点数。