大数相乘?
计算乘方是有快速算法的,并不是一个一个蛮力乘上去的。比如想算2^10000,计算机先算2^5000,再算一次平方,即两个数的乘法。而为了计算2^5000,计算机会先算2^2500再算一次平方。这个算法叫快速幂算法,对于2^N的计算,如果认为每次乘法的时间复杂度是O(1)的话,那整体的时间复杂度只有O(logN)级别。 一般来说,为了实现快速幂算法,首先把指数做二进制表示,比如你要算A的23次方,可以把23分解为16+4+2+1。然后计算B=A^2,C=B^2=A^4,D=(C^2)^2=A^16。最终结果为ABCD相乘。 但这里乘法的复杂度并不是O(1),因为它是无限精度的,也就是所谓的大数乘法。大数乘法也有很多算法,最朴素的,类似手算的方法,复杂度是O(N^2),其他一些方法有分治法,复杂度O(N^1.58),FFT方法,复杂度O(N logN loglogN)等。快速幂的O(logN)次大数乘法中,最复杂的只有最后一次,也就是2^5000的那次,前面的复杂度几何级数衰减,所以整体复杂度也就是最后一次计算的复杂度。如果你用FFT方法的话,复杂度也就是比线性多了一点点,一般计算机上随便算算就出来了。 CPU没有全速运行是因为这个程序只用了1个核心在做计算,而你显示的是总的使用率,所以大概会保持在四分之一的水平。 是否用到了移位操作涉及Python大数运算的具体设计,我不是很懂就不多讲了。但原理上讲也是很有可能的,如果用比特串存储大数的话,那么计算2^N只需要在数组的第N位设置一个1,其余设置为0即可,那么转换到十进制是这段代码中最消耗计算量的部分。