一元线性回归方程的判定系数

更新时间:01-22 教程 由 情殇 分享

一元线性回归方程的判定系数?

(1)计算残差平方和Q=∑(y-y*)^2和∑y^2,其中,y代表的是实测值,y*代表的是预测值;

(2)拟合度指标RNew=1-(Q/∑y^2)^(1/2)

对线性方程:

R^2==∑(y预测-y)^2/==∑(y实际-y)^2,y是平均数。如果R2=0.775,则说明变量y的变异中有77.5%是由变量X引起的。当R2=1时,表示所有的观测点全部落在回归直线上。当R2=0时,表示自变量与因变量无线性关系。

拟合优度是指回归直线对观测值的拟合程度。度量拟合优度的统计量是可决系数(亦称确定系数)R^2。R^2的取值范围是[0,1]。R^2的值越接近1,说明回归直线对观测值的拟合程度越好;反之,R^2的值越接近0,说明回归直线对观测值的拟合程度越差。

扩展资料

方法原理

主要是运用判定系数和回归标准差,检验模型对样本观测值的拟合程度。当解释变量为多元时,要使用调整的拟合优度,以解决变量元素增加对拟合优度的影响。

假定一个总体可分为r类,现从该总体获得了一个样本——这是一批分类数据,需要我们从这些分类数据中出发,去判断总体各类出现的概率是否与已知的概率相符。

R²衡量的是回归方程整体的拟合度,是表达因变量与所有自变量之间的总体关系。R²等于回归平方和在总平方和中所占的比率,即回归方程所能解释的因变量变异性的百分比(在MATLAB中,R²=1-"回归平方和在总平方和中所占的比率")。

实际值与平均值的总误差中,回归误差与剩余误差是此消彼长的关系。因而回归误差从正面测定线性模型的拟合优度,剩余误差则从反面来判定线性模型的拟合优度。

声明:关于《一元线性回归方程的判定系数》以上内容仅供参考,若您的权利被侵害,请联系13825271@qq.com
本文网址:http://www.25820.com/tutorial/14_2314333.html